Advanced Search+
Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203
Citation: Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203

Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge

Funds: This work is supported by National Natural Science Foun- dation of China (No. 11675177) and Anhui Province ST program (No. 1604a0902).
More Information
  • Received Date: February 09, 2018
  • The effects of nitrogen on ozone synthesis are studied in a coaxial cylinder generator with dielectric barrier discharge (DBD) and pack-bed dielectric barrier discharge (PB-DBD). A series of 10 h discharge experiments are conducted adopting a bare stainless electrode and bare copper electrode. Results show that the material of the electrode can affect the ozone synthesis. It is inferred that the ozone zero phenomenon (OZP) may be induced from ozone decomposing by metallic oxide catalysis. Packing dielectric particles can reduce the OZP. Adding a certain amount of nitrogen into the oxygen feed gas can further eliminate the OZP, and increase the ozone concentration significantly, but decreases the maximum energy efficiency of ozone generators. Initial analysis indicates that the optimal proportion of nitrogen addition is inversely related to the average reduced electric field strength in the discharge region.
  • [1]
    Xu X H and Zhao W R 2003 Ozone Treatment of Water and Wastewater (Beijing: Chemical Industry Press) (in Chinese)
    [2]
    Kogelschatz U, Eliasson B and Egli W 1997 J. Phys. IV France 7 C4–47
    [3]
    Cullen P J et al 2009 Trends Food Sci. Technol. 20 125
    [4]
    McDonough M X et al 2011 J. Stored Prod. Res. 47 249
    [5]
    Eliasson B, Hirth M and Kogelschatz U 1987 J. Phys. D Appl. Phys. 20 1421
    [6]
    Ozonek J, Fijalkowski S and Pollo I 1994 A new approach to energy distribution in industrial ozonizers Proc. of the Int. Ozone Symp.: Application of Ozone in Water and Wastewater Treatment
    [7]
    Yang C, Hu Z J and Wei L S 2010 High Voltage Appar. 46 78 (in Chinese)
    [8]
    Jodzis S 2003 Ozone: Sci. Eng. 25 63
    [9]
    Wei L S 2008 Theoretical and experimental research on ozone generation by gas discharge plasma PhD Thesis Zhejiang University, Hangzhou, China (in Chinese)
    [10]
    Mason N J, Skalny J D and Hadj-Ziane S 2002 Czechoslov. J. Phys. 52 85
    [11]
    Skalny J D et al 2002 Ozone: Sci. Eng. 24 29
    [12]
    Cromwell W E 1959 Effect of gaseous diluents on energy yield of ozone generation from oxygen Ozone Chem. & Tech. Amer. Chem. Soc. (Washington, DC: ACS) p 304
    [13]
    Filippov Y V and Vendillo V P 1962 Zhurn. Phys. Chim. 36 1987
    [14]
    Yan K P et al 2015 High Voltage Eng. 41 2528 (in Chinese)
    [15]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [16]
    Taguchi M et al 2007 Plasma Process. Polym. 4 719
    [17]
    Taguchi M et al 2011 Eur. Phys. J. Appl. Phys. 55 13805
    [18]
    Schmidt-Szalowski K and Borucka A 1989 Plasma Chem. Plasma Process. 9 235
    [19]
    Schmidt-Sza?owski K, Borucka A and Jodzis S 1990 Plasma Chem. Plasma Process. 10 443
    [20]
    Huang W D, Ren T T and Xia W D 2007 Ozone: Sci. Eng. 29 107
    [21]
    Murphy A B and Morrow R 2002 IEEE Trans. Plasma Sci. 30 180
    [22]
    Chen H L, Lee H M and Chang M B 2006 Ozone: Sci. Eng. 28 111
    [23]
    Wei J et al 2017 High Voltage Eng. 43 2696 (in Chinese)
    [24]
    Qian S L et al 2017 Nucl. Fusion Plasma Phys. 37 366 (in Chinese)
    [25]
    Takaki K, Urashima K and Chang J S 2004 IEEE Trans. Plasma Sci. 32 2175
    [26]
    Xu X J and Zhu D C 1996 The Gas Discharge Physics (Shanghai: Fudan University Press) (in Chinese)
    [27]
    Samoilovic V G, Gibalov V I and Kozlov K V 1997 Physical Chemistry of the Barrier Discharge (Düsseldorf: Deutscher Verlag für Schweisstechnik)
    [28]
    Takaki K, Chang J S and Kostov K G 2004 IEEE Trans. Dielectr. Electr. Insul. 11 481
    [29]
    Lu F 2010 Research on dielectric barrier discharge (DBD) in two phase of mixture (TPM) PhD Thesis Huazhong University of Science and Technology, Wuhan, China (in Chinese)
    [30]
    Nebel C et al 1973 J. Water Pollut. Control Fed. 45 2493
    [31]
    Yin H L et al 2003 Chem. Res. Appl. 15 1 (in Chinese)
    [32]
    Golodets G I and Ross J R H 1983 Heterogeneous Catalytic Reactions Involving Molecular Oxygen (Amsterdam: Elsevier)
    [33]
    Balamurugan D and Ted O S 1995 Chem. Lett. 24 413
    [34]
    Wei L, Gibbs G V and Oyama S T 1998 J. Am. Chem. Soc. 120 9041
    [35]
    Wei L and Oyama S T 1998 J. Am. Chem. Soc. 120 9047
    [36]
    Yuan D K et al 2016 J. Phys. D Appl. Phys. 49 455203
  • Related Articles

    [1]Min ZHU, Shengyu HU, Yinghao ZHANG, Shuqun WU, Chaohai ZHANG. Plasma propagation in single-particle packed dielectric barrier discharges: joint effects of particle shape and discharge gap[J]. Plasma Science and Technology, 2022, 24(6): 065401. DOI: 10.1088/2058-6272/ac5974
    [2]Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50
    [3]Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
    [4]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [5]Yunfeng HAN (韩云峰), Shaoyang WEN (温少扬), Hongwei TANG (汤红卫), Xianhu WANG (王贤湖), Chongshan ZHONG (仲崇山). Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 14001-014001. DOI: 10.1088/2058-6272/aa947a
    [6]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [7]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), GAO Ying (高莹), JIANG Yongfeng (蒋永锋), WEN Wen (文文), CHEN Longwei (陈龙威). Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water[J]. Plasma Science and Technology, 2016, 18(3): 278-286. DOI: 10.1088/1009-0630/18/3/11
    [8]HU Jian (胡健), JIANG Nan (姜楠), LI Jie (李杰), SHANG Kefeng (商克峰), LU Na (鲁娜), WU Yan (吴彦), MIZUNO Akira (水野障). Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power[J]. Plasma Science and Technology, 2016, 18(3): 254-258. DOI: 10.1088/1009-0630/18/3/07
    [9]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [10]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
  • Cited by

    Periodical cited type(18)

    1. Cui, Y., Ren, J., Wu, K. et al. Modelling the effect of deposited grid material on the power coupling of radio frequency ion thrusters. Journal of Electric Propulsion, 2025, 4(1): 2. DOI:10.1007/s44205-025-00101-9
    2. Levchenko, I., Goebel, D., Pedrini, D. et al. Recent innovations to advance space electric propulsion technologies. Progress in Aerospace Sciences, 2025. DOI:10.1016/j.paerosci.2023.100900
    3. Saifutdinova, A.A., Makushev, A.A., Gatiyatullin, F.R. et al. Simulation of the Plasma Parameters Dynamics in Iodine in an Electric Rocket Engine based on ICP Discharge. High Energy Chemistry, 2024, 58(Suppl 2): S215-S224. DOI:10.1134/S0018143924700899
    4. Saifutdinova, A.A., Makushev, A.A., Sysoev, S.S. et al. Parametric Analysis of Plasma-Chemical Processes in Electrodeless RF and Microwave Discharges in Iodine Vapor. High Energy Chemistry, 2024, 58(5): 575-582. DOI:10.1134/S0018143924700486
    5. Xu, Z., Wang, P., Cai, D. et al. Performance investigation of a low-power Hall thruster fed on iodine propellant. Plasma Science and Technology, 2024, 26(6): 065501. DOI:10.1088/2058-6272/ad240e
    6. Ma, L., He, J., Luo, J. et al. Research Progress of Radio Frequency Ion Thruster | [射频离子推力器研究进展]. Journal of Deep Space Exploration, 2024, 11(2): 111-123. DOI:10.15982/j.issn.2096-9287.2024.20230036
    7. Shu, M., Wang, G., Xu, Z. et al. Simulation Study on Discharge Characteristics of Radio Frequency Ion Thruster with Iodine Working Medium | [碘工质射频离子推力器放电特性仿真研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2024, 44(2): 125-131. DOI:10.13922/j.cnki.cjvst.202307002
    8. Li, X., Zeng, M., Liu, H. et al. Iodine electron cyclotron resonance plasma source for electric propulsion | [应用于电推进的碘工质电子回旋共振等离子体源]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(22): 225202. DOI:10.7498/aps.72.20230785
    9. Lafleur, T., Habl, L., Rossi, E.Z. et al. Development and validation of an iodine plasma model for gridded ion thrusters. Plasma Sources Science and Technology, 2022, 31(11): 114001. DOI:10.1088/1361-6595/ac9ad7
    10. Ye, Z.-W., Wang, P.-Y., Hua, Z.-W. et al. Feeding Design and Experimental Study of Iodine Electric Propulsion System | [碘工质电推进系统的储供设计及实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2022, 43(9): 21012. DOI:10.13675/j.cnki.tjjs.210125
    11. Esteves, B., Marmuse, F., Drag, C. et al. Charged-particles measurements in low-pressure iodine plasmas used for electric propulsion. Plasma Sources Science and Technology, 2022, 31(8): 085007. DOI:10.1088/1361-6595/ac8288
    12. Hua, Z., Wang, P., Ning, Z. et al. Early experimental investigation of the C12A7 hollow cathode fed on iodine. Plasma Science and Technology, 2022, 24(7): 074004. DOI:10.1088/2058-6272/ac4fb4
    13. Xu, Z., Tian, L., Ye, Z. et al. Design and Experimental Research on Principle Prototype of Iodine Hall Thruster | [碘工质霍尔推力器原理样机设计与实验研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2022, 42(6): 456-461. DOI:10.13922/j.cnki.cjvst.202112003
    14. Vavilov, I.S., Fedyanin, V.V., Yachmenev, P.S. et al. Determination of the parameters of the microwave ion thruster by the calorimetric method. Journal of Physics: Conference Series, 2022, 2182(1): 012067. DOI:10.1088/1742-6596/2182/1/012067
    15. Ashby, J., Rosset, S., Henke, E.F.M. et al. One Soft Step: Bio-Inspired Artificial Muscle Mechanisms for Space Applications. Frontiers in Robotics and AI, 2022. DOI:10.3389/frobt.2021.792831
    16. ZHANG, X., ZHANG, Z., JIA, S. et al. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster. Plasma Science and Technology, 2022, 24(1): 015506. DOI:10.1088/2058-6272/ac34e6
    17. Levko, D., Raja, L.L. Fluid modeling of inductively coupled iodine plasma for electric propulsion conditions. Journal of Applied Physics, 2021, 130(17): 173302. DOI:10.1063/5.0063578
    18. O’reilly, D., Herdrich, G., Kavanagh, D.F. Electric propulsion methods for small satellites: A review. Aerospace, 2021, 8(1): 1-30. DOI:10.3390/aerospace8010022

    Other cited types(0)

Catalog

    Article views (230) PDF downloads (608) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return