Advanced Search+
Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
Citation: Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6

Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge

Funds: This work is supported by National Natural Science Foundation of China (Nos. 51867018 and 51366012) and Natural Science Foundation for Distinguished Young Scholars of Jiangxi Province, China (No. 2018ACB21011).
More Information
  • Received Date: May 07, 2018
  • Pulsed dielectric barrier discharge is a promising technology for ozone generation and is drawing increasing interest. To overcome the drawback of experimental investigation, a kinetic model is applied to numerically investigate the effect of gas parameters including inlet gas temperature, gas pressure, and gas flow rate on ozone generation using pulsed dielectric barrier discharge. The results show that ozone concentration and ozone yield increase with decreasing inlet gas temperature, gas pressure, and gas flow rate. The highest ozone concentration and ozone yield in oxygen are about 1.8 and 2.5 times higher than those in air, respectively. A very interesting phenomenon is observed: the peak ozone yield occurs at a lower ozone concentration when the inlet gas temperature and gas pressure are higher because of the increasing average gas temperature in the discharge gap as well as the decreasing reduced electric field and electron density in the microdischarge channel. Furthermore, the sensitivity and rate of production analysis based on the specific input energy (SIE) for the four most important species O3, O, O(1D), and O2(b1∑) are executed to quantitatively understand the effects of every reaction on them, and to determine the contribution of individual reactions to their net production or destruction rates. A reasonable increase in SIE is beneficial to ozone generation. However, excessively high SIE is not favorable for ozone production.
  • [1]
    Wei L S et al 2013 High Voltage Eng. 39 2520
    [2]
    Wei L S et al 2013 Ozone-Sci. Eng. 35 448
    [3]
    Chang J S, Lawlwss P A and Yamamoto T 1991 IEEE Trans. Plasma Sci. 19 1152
    [4]
    Samaranayake W J M et al 2000 IEEE Trans. Dielectr. Electr. Insul. 7 849
    [5]
    Tanaka F et al 2011 Influence of gas flow rate and pressure in reactors on ozone production using a compact pulsed power generator Proc. of 2011 IEEE Pulsed Power Conf. (Chicago, IL, USA: IEEE)
    [6]
    Matsumoto T et al 2011 Gas temperature measurements of nano-seconds pulsed discharge based ozonizer Proc. of 2011 IEEE Pulsed Power Conf. (Chicago, IL, USA: IEEE)
    [7]
    Eliasson B and Kogelschatz U 1991 IEEE Trans. Plasma Sci. 19 309
    [8]
    Wei L S et al 2016 Plasma Sci. Technol. 18 147
    [9]
    Wei L S, Xu M and Zhang Y F 2016 Ozone-Sci. Eng. 39 33
    [10]
    Zhang Y F et al 2018 Ozone-Sci. Eng. 40 361
    [11]
    Li M et al 2016 High Voltage Eng. 42 2659 (in Chinese)
    [12]
    Wei L S et al 2014 Vacuum 104 61
    [13]
    Wei L S 2008 Theoretical and experimental research on ozone generation by gas discharge plasma PhD Thesis Zhejiang University (in Chinese)
    [14]
    Eliasson B, Hirth M and Kogelschatz U 1987 J. Phys. D: Appl. Phys. 20 1421
    [15]
    J Kitayama and M Kuzumoto 1999 J. Phys. D: Appl. Phys. 32 3032
    [16]
    Pekárek S and Mike? J 2014 Eur. Phys. J. D 68 310
    [17]
    Braun D, kuchler U and Pietsch G 1991 J. Phys. D: Appl. Phys. 24 564
    [18]
    Garamoon A A et al 2002 Plasma Sources Sci. Technol. 11 254
    [19]
    Kitayama J and Kuzumoto M 1997 J. Phys. D: Appl. Phys. 30 2453
    [20]
    Huang G M et al 2016 IEEE Trans. Plasma Sci. 44 2111
    [21]
    Masuda S et al 1988 IEEE Trans. Ind. Appl. 24 223
    [22]
    Boonduang S et al 2012 Proc. Eng. 32 936
    [23]
    Seok D C et al 2015 Ozone-Sci. Eng. 37 221
    [24]
    Sung T L et al 2013 Vacuum 90 65
    [25]
    Kogelschatz U, Eliasson B and Hirth M 1988 Ozone-Sci. Eng. 10 367
    [26]
    Wei L S et al 2016 Vacuum 125 123
  • Related Articles

    [1]Wenzheng LIU (刘文正), Maolin CHAI (柴茂林), Wenlong HU (胡文龙), Luxiang ZHAO (赵潞翔), Jia TIAN (田甲). Generation of atmospheric pressure diffuse dielectric barrier discharge based on multiple potentials in air[J]. Plasma Science and Technology, 2019, 21(7): 74004-074004. DOI: 10.1088/2058-6272/aafdf8
    [2]Wenzheng LIU (刘文正), Chuanlong MA (马传龙), Shuai ZHAO (赵帅), Xiaozhong CHEN (陈晓中), Tahan WANG (王踏寒), Luxiang ZHAO (赵潞翔), Zhiyi LI (李治一), Jiangqi NIU (牛江奇), Liying ZHU (祝莉莹), Maolin CHAI (柴茂林). Exploration to generate atmospheric pressure glow discharge plasma in air[J]. Plasma Science and Technology, 2018, 20(3): 35401-035401. DOI: 10.1088/2058-6272/aa9885
    [3]Wenzheng LIU (刘文正), Tahan WANG (王踏寒), Xiaozhong CHEN (陈晓中), Chuanlong MA (马传龙). Characteristics and application of diffuse discharge of water electrode in air[J]. Plasma Science and Technology, 2018, 20(1): 14003-014003. DOI: 10.1088/2058-6272/aa8fc5
    [4]Yunfeng HAN (韩云峰), Shaoyang WEN (温少扬), Hongwei TANG (汤红卫), Xianhu WANG (王贤湖), Chongshan ZHONG (仲崇山). Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 14001-014001. DOI: 10.1088/2058-6272/aa947a
    [5]Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
    [6]QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13
    [7]LIU Xinghua(刘兴华), XIAN Richang(咸日常), SUN Xuefeng(孙学峰), WANG Tao(王涛), LV Xuebin(吕学宾), CHEN Suhong(陈素红), YANG Fan(杨帆). Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(8): 749-757. DOI: 10.1088/1009-0630/16/8/05
    [8]CHEN Huixia(陈慧黠), XIU Zhilong(修志龙), BAI Fengwu(白凤武). Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma[J]. Plasma Science and Technology, 2014, 16(6): 602-607. DOI: 10.1088/1009-0630/16/6/12
    [9]TAO Xiaoping (陶小平), LI Meng (李蒙), LI Hui (李辉), DONG Hai (董海). Experimental Study of ZnO-Coated Alumina DBD in Atmospheric Pressure Air[J]. Plasma Science and Technology, 2013, 15(8): 787-790. DOI: 10.1088/1009-0630/15/8/13
    [10]TAO Xiaoping (陶小平), LU Rongde (卢荣德), LI Hui (李辉). Electrical characteristics of dielectric-barrier discharges in atmospheric pressure air using a power-frequency voltage source[J]. Plasma Science and Technology, 2012, 14(8): 723-727. DOI: 10.1088/1009-0630/14/8/08

Catalog

    Article views (168) PDF downloads (312) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return