Advanced Search+
Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c
Citation: Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c

Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor

Funds: This work is financially supported by National Key Research and Development Program of China (No. 2016YFB0600703) and Shijiazhuang City Important Science and Technology project (No. 176240857A).
More Information
  • Received Date: November 13, 2018
  • A coaxial dielectric barrier discharge (DBD) reactor was used for plasma-catalytic degradation of tetracycline hydrochloride over a series of Mn/γ-Al2O3 catalysts prepared by the incipient wetness impregnation method. The combination of plasma and the Mn/γ-Al2O3 catalysts significantly enhanced the degradation efficiency of tetracycline hydrochloride compared to the plasma process alone, with the 10% Mn/γ-Al2O3 catalyst exhibiting the best tetracycline hydrochloride degradation efficiency. A maximum degradation efficiency of 99.3% can be achieved after 5 min oxidation and a discharge power of 1.3 W, with only 69.7% by a single plasma process. The highest energy yield of the plasma-catalytic process is 91.7 gkWh−1. Probable reaction mechanisms of the plasma-catalytic removal of tetracycline hydrochloride were also proposed.
  • [1]
    Carvalho I T and Santos L 2016 Environ. Int. 94 736
    [2]
    Zheng S L et al 2011 Chemosphere 84 1677
    [3]
    Xu J et al 2014 Sci. Total Environ. 497–498 267
    [4]
    Marti E et al 2014 Water Res. 61 67
    [5]
    Magureanu M, Mandache N B and Parvulescu V I 2015 Water Res. 81 124
    [6]
    Stratton G R et al 2015 Chem. Eng. J. 273 543
    [7]
    Hu P et al 2015 Ind. Eng. Chem. Res. 54 8277
    [8]
    Jiang B et al 2012 Chem. Eng. J. 204–206 32
    [9]
    Kim K S, Kam S K and Mok Y S 2015 Chem. Eng. J. 271 31
    [10]
    Vanraes P et al 2015 J. Hazard. Mater. 299 647
    [11]
    D?ugosz M et al 2015 J. Hazard. Mater. 298 146
    [12]
    Hijosa-Valsero M et al 2013 J. Hazard. Mater. 262 664
    [13]
    Jiang B et al 2014 Chem. Eng. J. 236 348
    [14]
    He D et al 2014 Chem. Eng. J. 258 18
    [15]
    Wang B W et al 2017 Chem. Eng. Sci. 168 90
    [16]
    Reddy P M K and Subrahmanyam C 2012 Ind. Eng. Chem. Res. 51 11097
    [17]
    Jin X L et al 2013 Ind. Eng. Chem. Res. 52 9726
    [18]
    Shen T D, Wang Q W and Tong S P 2017 Ind. Eng. Chem. Res. 56 10965
    [19]
    Malik M A 2010 Plasma Chem. Plasma Process. 30 21
    [20]
    Magureanu M et al 2011 Water Res. 45 3407
    [21]
    Zhang G Y et al 2017 J. Hazard. Mater. 323 719
    [22]
    Rosal R et al 2010 J. Hazard. Mater. 183 271
    [23]
    Nawrocki J and Kasprzyk-Hordern B 2010 Appl. Catal. B 99 27
    [24]
    Wang L et al 2016 J. Phys. Chem. C 120 6136
    [25]
    Wang B W et al 2017 Chem. Eng. J. 322 679
    [26]
    Vázquez A, Hernández-Uresti D B and Obregón S 2016 Appl. Surf. Sci. 386 412
    [27]
    Xue J J et al 2015 ACS Appl. Mater. Interfaces 7 9630
    [28]
    Hernández-Uresti D B et al 2016 J. Photochem. Photobiol. A 324 47
    [29]
    Zhu X B et al 2016 Chemosphere 155 9
    [30]
    Lu M J et al 2015 Catal. Today 242 274
    [31]
    Tepluchin M et al 2014 Chem. Cat. Chem. 6 1763
    [32]
    Li Y P et al 2015 Appl. Surf. Sci. 324 736
    [33]
    Zhu X B et al 2015 Catal. Today 256 108
    [34]
    Huang R H et al 2012 Chem. Eng. J. 180 19
    [35]
    Huang R H et al 2011 Appl. Catal. B 106 264
    [36]
    Li S Y et al 2017 J. Colloid Interface Sci. 504 238
    [37]
    Li C H et al 2017 Chem. Eng. J. 325 624
    [38]
    Dong Y M et al 2007 Catal. Commun. 8 1599
    [39]
    He K et al 2008 J. Hazard. Mater. 159 587
    [40]
    Mok Y S, Jo J O and Whitehead J C 2008 Chem. Eng. J. 142 56
    [41]
    Sun Q Q et al 2015 J. Hazard. Mater. 286 276
    [42]
    Maroga Mboula V et al 2012 J. Hazard. Mater. 209–210 355
    [43]
    Li J H et al 2016 Appl. Catal. A 524 105
    [44]
    Khan M H, Bae H and Jung J Y 2010 J. Hazard. Mater. 181 659
    [45]
    Wan Y et al 2013 Chemosphere 90 1427
  • Related Articles

    [1]Hongbo FU, Huadong WANG, Mengyang ZHANG, Bian WU, Zhirong ZHANG. Effect of lens-to-sample distance on spatial uniformity and emission spectrum of flat-top laser-induced plasma[J]. Plasma Science and Technology, 2022, 24(8): 084005. DOI: 10.1088/2058-6272/ac6b8e
    [2]Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Miao LIU (刘淼), Yitong LIU (刘奕彤), Qingxue LI (李庆雪), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Xun GAO (高勋), Mingxing JIN (金明星). Comparison of emission signals for different polarizations in femtosecond laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(4): 45504-045504. DOI: 10.1088/2058-6272/abeb5d
    [3]Wei QI (齐巍), Qiuyun WANG (王秋云), Junfeng SHAO (邵俊峰), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas[J]. Plasma Science and Technology, 2021, 23(4): 45501-045501. DOI: 10.1088/2058-6272/abe52c
    [4]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [5]Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
    [6]Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc
    [7]Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
    [8]Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc
    [9]GUO Guangmeng (郭广盟), WANG Jie (王杰), BIAN Fang (边访), TIAN Di (田地), FAN Qingwen (樊庆文). A Hydrogel’s Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 661-665. DOI: 10.1088/1009-0630/18/6/13
    [10]W A FAROOQ, M ATIF, W TAWFIK, M S ALSALHI, Z A ALAHMED, M SARFRAZ, J P SINGH. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(12): 1141-1146. DOI: 10.1088/1009-0630/16/12/10
  • Cited by

    Periodical cited type(7)

    1. Osca Engelbrecht, M., Ridgers, C.P., Dedrick, J. et al. Particle-in-cell simulations of high frequency capacitively coupled plasmas including spatially localised inductive-like heating. Plasma Sources Science and Technology, 2023, 32(12): 125003. DOI:10.1088/1361-6595/ad0fb1
    2. Eremin, D., Kemaneci, E., Matsukuma, M. et al. Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code. Plasma Sources Science and Technology, 2023, 32(4): 044007. DOI:10.1088/1361-6595/accecb
    3. Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7
    4. Xing, Y., Qiao, N., Yu, J. et al. Spectroscopic depth profilometry of organic thin films upon inductively coupled plasma etching. Review of Scientific Instruments, 2022, 93(7): 073903. DOI:10.1063/5.0088718
    5. Vass, M., Wilczek, S., Derzsi, A. et al. Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 2022, 31(4): 045017. DOI:10.1088/1361-6595/ac6361
    6. Su, Z.-X., Shi, D.-H., Liu, Y.-X. et al. Radially-dependent ignition process of a pulsed capacitively coupled RF argon plasma over 300 mm-diameter electrodes: Multi-fold experimental diagnostics. Plasma Sources Science and Technology, 2021, 30(12): 125013. DOI:10.1088/1361-6595/ac3e3f
    7. Zhao, K., Guo, Y.-Q., Zhang, Q.-Z. et al. Experimental Investigation of Nonlinear Standing Waves in DC/VHF Hybrid Capacitive Discharges. IEEE Transactions on Plasma Science, 2021, 49(11): 3392-3397. DOI:10.1109/TPS.2021.3120596

    Other cited types(0)

Catalog

    Article views (184) PDF downloads (132) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return