Advanced Search+
Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc
Citation: Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc

Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes

Funds: This work is supported by National Natural Science Foundation of China (No. 21735005), the Science and Technology Program of Anhui Province (No. 1501041119), the Science and Technology Major Special Program of Anhui Province (No. 15CZZ04125), and National Key Research and Development Plan of China (No. 2016YFD0800902-2).
More Information
  • Received Date: May 17, 2018
  • The use of laser-induced breakdown spectroscopy (LIBS) for the analysis of heavy metals in water samples is investigated. Some factors such as splashing, surface ripples, extinction of emitted intensity, and a shorter plasma lifetime will influence the results if the water sample is directly measured. In order to avoid these disadvantages and the ‘coffee-ring effect’, hydrophilic graphite flakes with annular grooves were used for the first time to enrich and concentrate heavy metals in water samples before being analyzed by LIBS. The proposed method and procedure have been evaluated to concentrate and analyze cadmium, chromium, copper, nickel, lead, and zinc in a water sample. The correlation coefficients were all above 0.99. The detection limits of 0.029, 0.087, 0.012, 0.083, 0.125, and 0.049 mgl -1 for Cd, Cr, Cu, Ni, Pb, and Zn, respectively, were obtained in samples prepared in a laboratory. With this structure, the heavy metals homogeneously distribute in the annular groove and the relative standard deviations are all below 6%. This method is very convenient and suitable for online in situ analysis of heavy metals.
  • [1]
    Wang Z et al 2014 Front. Phys. 9 419
    [2]
    Hu L et al 2015 Plasma Sci. Technol. 17 699
    [3]
    Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol. 17 617
    [4]
    Wang Y J and Yuan X Q 2013 J. Gems Gemmol. 15 18 (in Chinese)
    [5]
    Noll R et al 2001 Spectrochim. Acta B 56 637
    [6]
    Hassan H E et al 2013 J. Appl. Sci. Res. 9 1074
    [7]
    Metzinger A et al 2014 Appl. Spectrosc. 68 789
    [8]
    Giakoumaki A, Melessanaki K and Anglos D 2007 Anal. Bioanal. Chem. 387 749
    [9]
    Lazic V et al 2005 Spectrochim. Acta B 60 1014
    [10]
    Cremers D A et al 2004 LIBS analysis of geological samples at low pressures: application to Mars, the Moon, and asteroids Proc. of the 35th Lunar and Planetary Science Conf. (Houston, TX: Los Alamos National Laboratory) p 35
    [11]
    Lazic V et al 2007 Spectrochim. Acta Part B At. Spectrosc. 62 1546
    [12]
    Abdel-Salam Z, Al Sharnoubi J and Harith M A 2013 Talanta 115 422
    [13]
    Yang H et al 2017 Laser Opt. Prog. 54 083002 (in Chinese)
    [14]
    Guo Y M et al 2016 Front. Phys. 11 114212
    [15]
    Pace D M D et al 2006 Spectrochim. Acta B 61 929
    [16]
    Pace D M D et al 2017 Spectrochim. Acta B 131 58
    [17]
    Wu Y Q et al 2016 Chin. J. Anal. Chem. 44 1919 (in Chinese)
    [18]
    Xu L et al 2012 J. Anhui Norm. Univ. Nat. Sci. 35 438 (in Chinese)
    [19]
    Serrano J, Moros J and Laserna J J 2016 Phys. Chem. Chem. Phys. 18 2398
    [20]
    Cortez J and Pasquini C 2013 Anal. Chem. 85 1547
    [21]
    Yang X Y et al 2016 Opt. Express 24 13410
    [22]
    Choi D et al 2015 Appl. Spectrosc. 68 198
    [23]
    Wang X et al 2015 Anal. Chem. 87 5577
    [24]
    Cáceres J O et al 2001 Spectrochim. Acta B 56 831
    [25]
    Wang Y Y et al 2017 Spectrosc. Spect. Anal. 37 884 (in Chinese)
    [26]
    Alamelu D, Sarkar A and Aggarwal S K 2008 Talanta 77 256
    [27]
    Jiang T J et al 2016 Electrochim. Acta 216 188
    [28]
    Schmidt N E and Goode S R 2002 Appl. Spectrosc. 56 370
    [29]
    Aguirre M A et al 2015 Talanta 131 348
    [30]
    Sarkar A et al 2009 J. Anal. At. Spectrom. 24 1545
    [31]
    Sarkar A et al 2010 Microchim. Acta 168 65
    [32]
    Shi H et al 2012 Spectrosc. Spect. Anal. 32 25 (in Chinese)
    [33]
    Wang C L et al 2012 Proc. of SPIE 6th Int. Symp. on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment 8417 84171G
    [34]
    Wang C L et al 2011 Chin. J. Lasers 38 252 (in Chinese)
    [35]
    Wang Y et al 2013 Laser Technol. 37 808 (in Chinese)
    [36]
    Bae D et al 2015 Spectrochim. Acta B 113 70
    [37]
    Lin Q Y et al 2016 Anal. At. Spectrom. 31 1622
    [38]
    Andrade D F, Speran?a M A and Pereira-Filho E R 2017 Anal. Methods 9 5156
    [39]
    Guo L B et al 2016 Front. Phys. 11 115208
    [40]
    Aragón C, Aguilera J A and Pe?alba F 1999 Appl. Spectrosc. 53 1259
    [41]
    Cheng Y K et al 2017 Technol. Dev. Enterp. 36 5 (in Chinese)
    [42]
    Song C, Zhang Y W and Gao X 2017 Spectrosc. Spect. Anal. 37 1885 (in Chinese)
    [43]
    Lin Q Y et al 2017 J. Anal. At. Spectrom. 32 1412
    [44]
    Wu Q F et al 2017 Laser J. 38 21 (in Chinese)
    [45]
    Lu Y et al 2010 Appl. Opt. 49 C75
    [46]
    Zheng M L et al 2013 Laser Optoelectron. Prog. 50 073004 (in Chinese)
    [47]
    Tawfik W and Sawaf S 2014 Proc. of SPIE Sensing Technology and Applications 9101 91010L
    [48]
    Zhong S L et al 2016 Front. Phys. 11 114202
  • Related Articles

    [1]You HE, Yeong-Min LIM, Jun-Ho LEE, Ju-Ho KIM, Moo-Young LEE, Chin-Wook CHUNG. Effect of parallel resonance on the electron energy distribution function in a 60 MHz capacitively coupled plasma[J]. Plasma Science and Technology, 2023, 25(4): 045401. DOI: 10.1088/2058-6272/ac9b9f
    [2]Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
    [3]Liang SONG (宋亮), Xianping WANG (王先平), Le WANG (王乐), Ying ZHANG (张营), Wang LIU (刘旺), Weibing JIANG (蒋卫斌), Tao ZHANG (张涛), Qianfeng FANG (方前锋), Changsong LIU (刘长松). Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique[J]. Plasma Science and Technology, 2017, 19(4): 45502-045502. DOI: 10.1088/2058-6272/aa57f0
    [4]JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08
    [5]LIU Yi (刘毅), YE Chao (叶超), HE Haijie (何海杰), WANG Xiangying (王响英). Effect of Frequency and Power of Bias Applied to Substrate on Plasma Property of Very-High-Frequency Magnetron Sputtering[J]. Plasma Science and Technology, 2015, 17(7): 583-588. DOI: 10.1088/1009-0630/17/7/10
    [6]GAO Huanzhong (高欢忠), HE Long (何龙), HE Zhijiang (何志江), LI Zebin (李泽斌), et al.. Work Function Enhancement of Indium Tin Oxide via Oxygen Plasma Immersion Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 791-793. DOI: 10.1088/1009-0630/15/8/14
    [7]Umm-i-KALSOOM, R. AHMAD, Nisar ALI, I. A. KHAN, Sehrish SALEEM, Uzma IKHLAQ, et al. Effect of Power and Nitrogen Content on the Deposition of CrN Films by Using Pulsed DC Magnetron Sputtering Plasma[J]. Plasma Science and Technology, 2013, 15(7): 666-672. DOI: 10.1088/1009-0630/15/7/12
    [8]LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05
    [9]PANG Jianhua (庞见华), LU Wenqi (陆文琪), XIN Yu (辛煜), WANG Hanghang (王行行), HE Jia (贺佳), XU Jun (徐军). Plasma Diagnosis for Microwave ECR Plasma Enhanced Sputtering Deposition of DLC Films[J]. Plasma Science and Technology, 2012, 14(2): 172-176. DOI: 10.1088/1009-0630/14/2/17
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.
  • Cited by

    Periodical cited type(20)

    1. Wang, L., Zhao, H., Han, Z. et al. Numerical simulation of He atmospheric pressure plasma jet impinging on the tilted dielectric surface. Journal of Applied Physics, 2024, 136(11): 113302. DOI:10.1063/5.0232639
    2. Yang, C., Geng, Y., Wang, J. EFFECT OF AIR IMPURITIES ON THE CHARACTERISTICS OF HELIUM DISCHARGE AT HIGH TEMPERATURE AND HIGH PRESSURE. 2024. DOI:10.1115/ICONE31-135193
    3. Fang, Z., Pan, Y.-Q., Dai, D. et al. Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation | [基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(14): 145201. DOI:10.7498/aps.73.20240343
    4. Yang, D., Chen, J., Duan, Z. et al. Simulation analysis on microscopic discharge characteristics of the bipolar corona of a floating conductor. Plasma Science and Technology, 2023, 25(8): 085402. DOI:10.1088/2058-6272/acc16e
    5. Liu, K., Fang, Z., Dai, D. Numerical study on uniformity of atmospheric helium gas dielectric barrier discharge on non-smooth surface regulated by sinusoidal clipping voltage | [正弦削波电压调控大气压氦气非平滑表面介质阻挡放电均匀性的仿真研究]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(13): 135201. DOI:10.7498/aps.72.20230385
    6. Ning, W., Li, R., Shen, X. et al. Simulation of the Discharges in Millimetre Gap Driven by Radio-frequency and Kilohertz AC Voltages | [射 频 和 千 赫 兹 驱 动 的 毫 米 间 隙 放 电 的 仿 真 研 究]. Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2023, 55(4): 38-46. DOI:10.15961/j.jsuese.202200996
    7. Huo, W., Lin, J., Yu, T. et al. Numerical studies on the influences of gas temperature on atmospheric-pressure helium dielectric barrier discharge characteristics. Plasma Science and Technology, 2023, 25(5): 055402. DOI:10.1088/2058-6272/aca9a7
    8. Yang, C., Geng, Y., Wang, J. Influence of nitrogen impurities on the characteristics of helium discharge at high pressure. Annals of Nuclear Energy, 2022. DOI:10.1016/j.anucene.2022.109024
    9. Liu, F., Zhuang, Y., Zhao, Y. et al. Effects of O2addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies. Plasma Science and Technology, 2022, 24(5): 054004. DOI:10.1088/2058-6272/ac41c1
    10. Wang, S., Song, P., Pei, H. et al. Numerical Simulation and Experimental Study of Ar/CH4 Coaxial DBD Discharge Characteristics. Advances in Transdisciplinary Engineering, 2022. DOI:10.3233/ATDE220025
    11. Luo, B., Wang, J., Dai, D. et al. Partial discharge simulation of air gap defects in oil-paper insulation paperboard of converter transformer under different ratios of ac–dc combined voltage. Energies, 2021, 14(21): 6995. DOI:10.3390/en14216995
    12. Zhao, L., Ji, Y., Shang, H. et al. Propagation Mechanism of a Positive DC Driven Atmospheric Pressure Helium Plasma Jet: Influences of He-air Mixing Layer | [正极性直流驱动大气压氦气等离子体射流的传播机制: 氦气-空气混合层的影响]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41(17): 6090-6099. DOI:10.13334/j.0258-8013.pcsee.202583
    13. Yang, C.-P., Geng, Y.-N., Wang, J. et al. Breakdown voltage of high pressure helium parallel plates and effect of field emission | [高气压氦气平行极板击穿电压及场致发射的影响]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(13): 135102. DOI:10.7498/aps.70.20210086
    14. Wang, Q., Zhou, X., Dai, D. et al. Nonlinear feature in the spatial uniformity of an atmospheric helium dielectric barrier discharge with the inter-dielectric gap width enlarged. Plasma Sources Science and Technology, 2021, 30(5): 05LT01. DOI:10.1088/1361-6595/abf75e
    15. Wang, Q., Dai, D., Ning, W. et al. Atmospheric dielectric barrier discharge containing helium-air mixtures: The effect of dry air impurities on the spatial discharge behavior. Journal of Physics D: Applied Physics, 2021, 54(11): 115203. DOI:10.1088/1361-6463/abcdd1
    16. LIU, Y., WANG, S., ZHOU, R. et al. Development of a battery-operated floatingelectrode dielectric barrier discharge plasma device and its characteristics. Plasma Science and Technology, 2021, 23(6): 064008. DOI:10.1088/2058-6272/abed2e
    17. Huang, Z., Zhang, Y., Dai, D. et al. Controlling the number of discharge current pulses in an atmospheric dielectric barrier discharge by voltage waveform tailoring. AIP Advances, 2021, 11(1): 015203. DOI:10.1063/5.0033571
    18. Wang, Q., Ning, W., Dai, D. et al. How does the moderate wavy surface affect the discharge behavior in an atmospheric helium dielectric barrier discharge model?. Plasma Processes and Polymers, 2020, 17(2): 1900182. DOI:10.1002/ppap.201900182
    19. Luo, L., Huang, Z., Wang, Q. et al. Influence of oxygen on the multiple-current-pulse behavior in an atmospheric homogeneous helium dielectric barrier discharge with air impurities. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.2964653
    20. Liu, F., Guo, X., Zhou, Z. et al. Numerical simulations of the effects of the level of nitrogen impurities in atmospheric helium Townsend discharge. Physics of Plasmas, 2019, 26(12): 123502. DOI:10.1063/1.5125294

    Other cited types(0)

Catalog

    Article views (196) PDF downloads (247) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return