Advanced Search+
Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
Citation: Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7

Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature

Funds: This work was supported by National Natural Science Foundation of China (Nos. 51506171 and 51675415), National Natural Science Foundation of China for Key Program (No. 51335009), National Key Research and Development Program of China (No. 2017YFD0700200) and the joint research fund between Tokushima University and Xi’an Jiaotong University.
More Information
  • Received Date: August 29, 2018
  • A remote open-path laser-induced breakdown spectroscopy (LIBS) system was designed and studied in the present work for the purpose of combining the LIBS technique with the steel production line. In this system, the relatively simple configuration and optics were employed to measure the steel samples at a remote distance and a hot sample temperature. The system has obtained a robustness for the deviation of the sample position because of the open-path and all- optical structure. The measurement was carried out at different sample temperatures by placing the samples in a muffle furnace with a window in the front door. The results show that the intensity of the spectral lines increased as the sample temperature increased. The influence of the sample temperature on the quantitative analysis of manganese in the steel samples was investigated by measuring ten standard steel samples at different temperatures. Three samples were selected as the test sample for the simulation measurement. The results show that, at the sample temperature of 500°C, the average relative error of prediction is 3.1% and the average relative standard deviation is 7.7%, respectively.
  • [1]
    Noll R 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Berlin: Springer)
    [2]
    Deguchi Y 2011 Industrial Applications of Laser Diagnostics (Boca Raton: CRS Press, Taylor & Francis)
    [3]
    Balzer H et al 2006 Anal. Bioanal. Chem. 385 225
    [4]
    Balzer H et al 2006 Anal. Bioanal. Chem. 385 234
    [5]
    Meinhardt C et al 2016 Spectrochim. Acta B 123 171
    [6]
    Gruber J et al 2001 Spectrochim. Acta B 56 685
    [7]
    Boué-Bigne F 2016 Spectrochim. Acta B 119 25
    [8]
    Noll R et al 2001 Spectrochim. Acta B 56 637
    [9]
    Sun L X et al 2015 Spectrochim. Acta B 112 40
    [10]
    Palanco S, Conesa S and Laserna J J 2004 J. Anal. At. Spectrom. 19 462
    [11]
    Hubmer G, Kitzberger R and M?rwald K 2006 Anal. Bioanal. Chem. 385 219
    [12]
    Palanco S, Baena J M and Laserna J J 2002 Spectrochim. Acta B 57 591
    [13]
    Sun L X et al 2011 Chin. J. Lasers 38 0915002 (in Chinese)
    [14]
    Sun L X et al 2011 Chin. J. Sci. Instrum. 32 2602–8 (in Chinese)
    [15]
    Sun L X et al 2013 Adv. Mater. Res. 694–697 1260
    [16]
    Peter L, Sturm V and Noll R 2003 Appl. Opt. 42 6199
    [17]
    Aragón C, Aguilera J A and Campos J 1993 Appl. Spectrosc. 47 606
    [18]
    Kolmhofer P J et al 2015 Spectrochim. Acta B 106 67
    [19]
    Sanghapi H K et al 2016 Spectrochim. Acta B 115 40
    [20]
    Vrenegor J, Noll R and Sturm V 2005 Spectrochim. Acta B 60 1083
    [21]
    Boué-Bigne F 2008 Spectrochim. Acta B 63 1122
    [22]
    NIST Standard Reference Database 78 (https://doi.org/10. 18434/T4W30F)
    [23]
    Fujimoto T 2004 Plasma Spectroscopy (Oxford: Oxford University Press)
    [24]
    Song C, Gao X and Shao Y 2016 Optik 127 3979
    [25]
    Noll R et al 2008 Spectrochim. Acta B 63 1159
    [26]
    Wang Z Z et al 2017 Appl. Spectrosc. 71 2187
    [27]
    Yao S C et al 2011 Appl. Surf. Sci. 257 3103
    [28]
    Noda M et al 2002 Spectrochim. Acta B 57 701
    [29]
    López-Moreno C, Palanco S and Laserna J J 2005 Spectrochim. Acta B 60 1034
    [30]
    Cui M C et al 2018 Spectrochim. Acta B 142 14
    [31]
    Cui M C et al 2018 Appl. Spectrosc. ASP803943
    [32]
    Miller J N and Miller J C 2006 Statistics and Chemometrics for Analytical Chemistry 6th edn (Englewood Cliffs, NJ: Prentice-Hall)
    [33]
    Hao Z et al 2014 J. Anal. At. Spectrom. 29 2309
    [34]
    Freeman J R et al 2014 Spectrochim. Acta B 102 36
    [35]
    Zaytsev S M et al 2014 J. Anal. At. Spectrom. 29 1417
  • Related Articles

    [1]Yuanxiang ZHOU (周远翔), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵), Yunxiao ZHANG (张云霄), Yajun MO (莫雅俊), Jiantao SUN (孙建涛). Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage[J]. Plasma Science and Technology, 2018, 20(5): 54016-054016. DOI: 10.1088/2058-6272/aaa479
    [2]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [3]Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
    [4]Manping LI (李曼苹), Kai WU (吴锴), Zhao ZHANG (张钊), Yonghong CHENG (成永红). Effect of toughened epoxy resin on partial discharge at solid–solid interface[J]. Plasma Science and Technology, 2017, 19(2): 25401-025401. DOI: 10.1088/2058-6272/19/2/025401
    [5]Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06
    [6]ZHANG Jiao(张佼), WANG Yanhui(王艳辉), WANG Dezhen(王德真), ZHUANG Juan(庄娟). Two-Dimensional Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation in an Atmospheric-Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(2): 110-117. DOI: 10.1088/1009-0630/16/2/05
    [7]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [8]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [9]LUO Yongfen, JI Haiying, HUANG Ping, LI Yanming. Chaotic Characteristic of Time Series of Partial Discharge in Oil-Paper Insulation[J]. Plasma Science and Technology, 2011, 13(6): 740-746.
    [10]WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566.
  • Cited by

    Periodical cited type(16)

    1. Shentu, L., Peng, D., Xi, J. A novel neural network architecture dedicated for LIBS spectrum analysis with its application to steel pipe classification. Measurement Science and Technology, 2025, 36(1): 015215. DOI:10.1088/1361-6501/ad9166
    2. Hao, Z., Liu, K., Lian, Q. et al. Machine learning in laser-induced breakdown spectroscopy: A review. Frontiers of Physics, 2024, 19(6): 62501. DOI:10.1007/s11467-024-1427-2
    3. Wang, A., Cui, J.-C., Song, W.-R. et al. Quantitative Analysis of Coal Properties Using Laser-Induced Breakdown Spectroscopy and Semi-Supervised Learning | [基 于 激 光诱 导 击穿 光谱 与 半监 督 学 习 的 煤质 定 量 分 析 研 究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(7): 1940-1945. DOI:10.3964/j.issn.1000-0593(2024)07-1940-06
    4. Wang, D., Xu, L., Gao, W. et al. Application of Semi-Supervised Learning Model to Coal Sample Classification. Applied Sciences (Switzerland), 2024, 14(4): 1606. DOI:10.3390/app14041606
    5. Képeš, E., Vrábel, J., Siozos, P. et al. Quantification of alloying elements in steel targets: The LIBS 2022 regression contest. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106710
    6. Van den Eynde, S., Díaz-Romero, D.J., Zaplana, I. et al. Deep learning regression for quantitative LIBS analysis. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106634
    7. Zhu, Q.-X., Zhang, H.-T., Tian, Y. et al. Co-training based virtual sample generation for solving the small sample size problem in process industry. ISA Transactions, 2023. DOI:10.1016/j.isatra.2022.08.021
    8. Zhang, D., Zhang, H., Zhao, Y. et al. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: machine learning. Applied Spectroscopy Reviews, 2022, 57(2): 89-111. DOI:10.1080/05704928.2020.1843175
    9. Wang, Z., Afgan, M.S., Gu, W. et al. Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. TrAC - Trends in Analytical Chemistry, 2021. DOI:10.1016/j.trac.2021.116385
    10. Chang, F., Yang, J., Lu, H. et al. Repeatability enhancing method for one-shot LIBS analysis: Via spectral intensity correction based on probability distribution. Journal of Analytical Atomic Spectrometry, 2021, 36(8): 1712-1723. DOI:10.1039/d1ja00040c
    11. Xu, W., Tang, J., Xia, H. A review of semi-supervised learning for industrial process regression modeling. 2021. DOI:10.23919/CCC52363.2021.9550262
    12. Li, D., Huang, D., Liu, Y. Research on semi-supervised heterogeneous adaptive co-training soft-sensor model | [基于协同训练的半监督异构自适应软测量建模方法的研究]. Huagong Xuebao/CIESC Journal, 2020, 71(5): 2128-2138. DOI:10.11949/0438-1157.20191378
    13. Gao, J., Tian, Y., Chen, X. Antenna Optimization Based on Co-Training Algorithm of Gaussian Process and Support Vector Machine. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.3039269
    14. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    15. Bai, X., Zhang, L., Yang, T. et al. Semi-supervised learning based acoustic NLOS identification for smartphone indoor positioning. 2019. DOI:10.1109/ICSPCC46631.2019.8960779
    16. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (184) PDF downloads (281) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return