Advanced Search+
Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
Citation: Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7

Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature

Funds: This work was supported by National Natural Science Foundation of China (Nos. 51506171 and 51675415), National Natural Science Foundation of China for Key Program (No. 51335009), National Key Research and Development Program of China (No. 2017YFD0700200) and the joint research fund between Tokushima University and Xi’an Jiaotong University.
More Information
  • Received Date: August 29, 2018
  • A remote open-path laser-induced breakdown spectroscopy (LIBS) system was designed and studied in the present work for the purpose of combining the LIBS technique with the steel production line. In this system, the relatively simple configuration and optics were employed to measure the steel samples at a remote distance and a hot sample temperature. The system has obtained a robustness for the deviation of the sample position because of the open-path and all- optical structure. The measurement was carried out at different sample temperatures by placing the samples in a muffle furnace with a window in the front door. The results show that the intensity of the spectral lines increased as the sample temperature increased. The influence of the sample temperature on the quantitative analysis of manganese in the steel samples was investigated by measuring ten standard steel samples at different temperatures. Three samples were selected as the test sample for the simulation measurement. The results show that, at the sample temperature of 500°C, the average relative error of prediction is 3.1% and the average relative standard deviation is 7.7%, respectively.
  • [1]
    Noll R 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Berlin: Springer)
    [2]
    Deguchi Y 2011 Industrial Applications of Laser Diagnostics (Boca Raton: CRS Press, Taylor & Francis)
    [3]
    Balzer H et al 2006 Anal. Bioanal. Chem. 385 225
    [4]
    Balzer H et al 2006 Anal. Bioanal. Chem. 385 234
    [5]
    Meinhardt C et al 2016 Spectrochim. Acta B 123 171
    [6]
    Gruber J et al 2001 Spectrochim. Acta B 56 685
    [7]
    Boué-Bigne F 2016 Spectrochim. Acta B 119 25
    [8]
    Noll R et al 2001 Spectrochim. Acta B 56 637
    [9]
    Sun L X et al 2015 Spectrochim. Acta B 112 40
    [10]
    Palanco S, Conesa S and Laserna J J 2004 J. Anal. At. Spectrom. 19 462
    [11]
    Hubmer G, Kitzberger R and M?rwald K 2006 Anal. Bioanal. Chem. 385 219
    [12]
    Palanco S, Baena J M and Laserna J J 2002 Spectrochim. Acta B 57 591
    [13]
    Sun L X et al 2011 Chin. J. Lasers 38 0915002 (in Chinese)
    [14]
    Sun L X et al 2011 Chin. J. Sci. Instrum. 32 2602–8 (in Chinese)
    [15]
    Sun L X et al 2013 Adv. Mater. Res. 694–697 1260
    [16]
    Peter L, Sturm V and Noll R 2003 Appl. Opt. 42 6199
    [17]
    Aragón C, Aguilera J A and Campos J 1993 Appl. Spectrosc. 47 606
    [18]
    Kolmhofer P J et al 2015 Spectrochim. Acta B 106 67
    [19]
    Sanghapi H K et al 2016 Spectrochim. Acta B 115 40
    [20]
    Vrenegor J, Noll R and Sturm V 2005 Spectrochim. Acta B 60 1083
    [21]
    Boué-Bigne F 2008 Spectrochim. Acta B 63 1122
    [22]
    NIST Standard Reference Database 78 (https://doi.org/10. 18434/T4W30F)
    [23]
    Fujimoto T 2004 Plasma Spectroscopy (Oxford: Oxford University Press)
    [24]
    Song C, Gao X and Shao Y 2016 Optik 127 3979
    [25]
    Noll R et al 2008 Spectrochim. Acta B 63 1159
    [26]
    Wang Z Z et al 2017 Appl. Spectrosc. 71 2187
    [27]
    Yao S C et al 2011 Appl. Surf. Sci. 257 3103
    [28]
    Noda M et al 2002 Spectrochim. Acta B 57 701
    [29]
    López-Moreno C, Palanco S and Laserna J J 2005 Spectrochim. Acta B 60 1034
    [30]
    Cui M C et al 2018 Spectrochim. Acta B 142 14
    [31]
    Cui M C et al 2018 Appl. Spectrosc. ASP803943
    [32]
    Miller J N and Miller J C 2006 Statistics and Chemometrics for Analytical Chemistry 6th edn (Englewood Cliffs, NJ: Prentice-Hall)
    [33]
    Hao Z et al 2014 J. Anal. At. Spectrom. 29 2309
    [34]
    Freeman J R et al 2014 Spectrochim. Acta B 102 36
    [35]
    Zaytsev S M et al 2014 J. Anal. At. Spectrom. 29 1417
  • Related Articles

    [1]Zhongma WANG, Chaoyi SHI, Xiuqing ZHANG, Wenwu LU, Sheng ZHANG, Xianhe GAO, Tao XU, Xingxing SHAO, Liansheng HUANG. Analysis and verification of electrodynamic force, thermal stress and current sharing for CRAFT converter structure design[J]. Plasma Science and Technology, 2024, 26(8): 085601. DOI: 10.1088/2058-6272/ad3c6c
    [2]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [3]Xuyang CHEN (陈旭阳), Fangfang SHEN (沈方芳), Yanming LIU (刘彦明), Wei AI (艾炜), Xiaoping LI (李小平). Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application[J]. Plasma Science and Technology, 2018, 20(6): 65503-065503. DOI: 10.1088/2058-6272/aaaa18
    [4]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Chunsheng REN (任春生). Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2018, 20(6): 65402-065402. DOI: 10.1088/2058-6272/aaac79
    [5]Jianwu HE (贺建武), Longfei MA (马隆飞), Senwen XUE (薛森文), Chu ZHANG (章楚), Li DUAN (段俐), Qi KANG (康琦). Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology, 2018, 20(2): 25403-025403. DOI: 10.1088/2058-6272/aa89e1
    [6]Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab
    [7]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [8]XIAO Jixiong (肖集雄), ZENG Zhong (曾中), XIA Donghui (夏冬辉), WANG Zhijiang (王之江), LIU Changhai (刘昌海). Effects of Boundary Current on Electromagnetic Dispersion Characteristics for a Relativistic Electron Beam[J]. Plasma Science and Technology, 2016, 18(1): 51-57. DOI: 10.1088/1009-0630/18/1/09
    [9]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [10]XI Yanbin (奚衍斌), LIU Yue (刘悦). FDTD Simulation on Power Absorption of Terahertz Electromagnetic Waves in Dense Plasma[J]. Plasma Science and Technology, 2012, 14(1): 5-8. DOI: 10.1088/1009-0630/14/1/02

Catalog

    Article views (183) PDF downloads (281) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return