Advanced Search+
Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
Citation: Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e

Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement

Funds: We acknowledge the support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11474129); Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC); the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province, China (2016, No. 400).
More Information
  • Received Date: January 07, 2018
  • Spatial confinement can significantly enhance the spectral intensity of laser-induced plasma in air. It is attributed to the compression of plasma plume by the reflected shockwave. In addition, optical emission spectroscopy of laser-induced plasma can also be affected by the distance between lens and sample surface. In order to obtain the optimized spectral intensity, the distance must be considered. In this work, spatially confined laser-induced silicon plasma by using a Nd: YAG nanosecond laser at different distances between lens and sample surface was investigated. The laser energies were 12 mJ, 16 mJ, 20 mJ, and 24 mJ. All experiments were carried out in an atmospheric environment. The results indicated that the intensity of Si (I) 390.55 nm line firstly rose and then dropped with the increase of lens-to-sample distance. Moreover, the spectral peak intensity with spatial confinement was higher than that without spatial confinement. The enhancement ratio was approximately 2 when laser energy was 24 mJ.
  • [1]
    Winefordner J D et al 2004 J. Anal. At. Spectrom. 19 1061
    [2]
    Vadillo J M and Laserna J J 2004 Spectrochim. Acta B: At. Spectrosc. 59 147
    [3]
    Chen A et al 2015 Phys. Plasmas 22 033301
    [4]
    Zhang H S, Yueh F Y and Singh J P 1999 Appl. Opt. 38 1459
    [5]
    Hahn D W and Lunden M M 2000 Aeros. Sci. Technol. 33 30
    [6]
    Yin W B et al 2009 Appl. Spectrosc. 63 865
    [7]
    Wang Y et al 2016 Plasma Sci. Technol. 18 1192
    [8]
    Noll R 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Berlin Heidelberg: Springer)
    [9]
    Hanson C, Phongikaroon S and Scott J R 2014 Spectrochim. Acta B: At. Spectrosc. 97 79
    [10]
    Harilal S S et al 2011 J. Appl. Phys. 109 063306
    [11]
    Le Drogoff B et al 2004 Plasma Sources Sci. Technol. 13 223
    [12]
    Wang Y et al 2017 AIP Adv. 7 095204
    [13]
    Kuzuya M and Mikami O 1990 Jpn. J. Appl. Phys. 29 1568
    [14]
    Wang Q X et al 2015 Appl. Opt. 54 8235
    [15]
    Sdorra W and Niemax K 1992 Microchim. Acta 107 319
    [16]
    Liu Y et al 2017 Plasma Sci. Technol. 19 125501
    [17]
    Zhou Y, Wu B X and Forsman A 2010 J. Appl. Phys. 108 093504
    [18]
    Hafez M A et al 2003 Plasma Sources Sci. Technol. 12 185
    [19]
    Aragón C, Campos J and Aguilera J A 1992 Appl. Spectrosc. 46 1382
    [20]
    Li X W et al 2013 J. Appl. Phys. 113 243304
    [21]
    Multari R A et al 1996 Appl. Spectrosc. 50 1483
    [22]
    Harilal S S et al 2009 Appl. Phys. Lett. 95 221501
    [23]
    Aguilera J A, Bengoechea J and Aragón C 2004 Spectrochim. Acta B: At. Spectrosc. 59 461
    [24]
    Shen X K et al 2007 Appl. Phys. Lett. 91 081501
    [25]
    Shen X K et al 2007 J. Appl. Phys. 102 093301
    [26]
    Guo L B et al 2013 Opt. Express 21 18188
    [27]
    Guo L B et al 2012 Opt. Express 20 1436
    [28]
    Guo L B et al 2011 Opt. Express 19 14067
    [29]
    Gao X et al 2015 J. Phys. D: Appl. Phys. 48 175205
    [30]
    Wang Y et al 2016 Spectrochim. Acta B: At. Spectrosc. 126 44
    [31]
    Li A et al 2017 Opt. Express 25 27559
    [32]
    Li X W et al 2017 J. Phys. D: Appl. Phys. 50 015203
    [33]
    Wang Y et al 2016 J. Anal. At. Spectrom. 31 1974
    [34]
    Meng D S et al 2015 Plasma Sci. Technol. 17 632
    [35]
    Diao C Y et al 2011 Eur. Phys. J. D 63 123
    [36]
    Voropay E and Ermalitskaia K 2011 Eur. Phys. J. D 64 453
    [37]
    Lagrange J-F, Wolfman J and Motret O 2012 J. Appl. Phys. 111 063301
    [38]
    Harilal S S et al 2015 Opt. Express 23 15608
    [39]
    Fu Y T, Hou Z Y and Wang Z 2016 Opt. Express 24 3055
    [40]
    Li C M et al 2014 J. Anal. At. Spectrom. 29 638
    [41]
    Yang Z F et al 2015 Phys. Plasmas 22 073511
    [42]
    Wang X W et al 2017 Phys. Plasmas 24 103305
    [43]
    Shao J F et al 2017 Plasma Sci. Technol. 19 25506
    [44]
    Su X J, Zhou W D and Qian H G 2014 J. Anal. At. Spectrom. 29 2356
    [45]
    Haq S U et al 2015 Phys. Plasmas 22 083504
    [46]
    Chen L M et al 2001 Phys. Plasmas 8 2925
    [47]
    Gamaly E G et al 2002 Phys. Plasmas 9 949
    [48]
    Cheng C W et al 2016 Appl. Surface Sci. 361 41
    [49]
    Aguilera J A, Aragón C and Pe?alba F 1998 Appl. Surface Sci. 127–129 309
    [50]
    Liu T-H et al 2014 Chin. Phys. B 23 085203
  • Related Articles

    [1]Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111
    [2]Lin WANG (王林), Junkang YAO (姚军康), Zheng WANG (王政), Hongqiao JIAO (焦洪桥), Jing QI (齐静), Xiaojing YONG (雍晓静), Dianhua LIU (刘殿华). Fast and low-temperature elimination of organic templates from SBA-15 using dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2018, 20(10): 101001. DOI: 10.1088/2058-6272/aad547
    [3]Xingmin SHI (石兴民), Jinren LIU (刘进仁), Guimin XU (许桂敏), Yueming WU (吴月明), Lingge GAO (高菱鸽), Xiaoyan LI (李晓艳), Yang YANG (杨阳), Guanjun ZHANG (张冠军). Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach[J]. Plasma Science and Technology, 2018, 20(4): 44004-044004. DOI: 10.1088/2058-6272/aa9b78
    [4]Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f
    [5]M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002
    [6]Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04
    [7]YAO Shuiliang (姚水良), WENG Shan (翁珊), JIN Qi (金旗), HAN Jingyi (韩竞一), JIANG Boqiong (江博琼), WU Zuliang (吴祖良). Equation of Energy Injection to a Dielectric Barrier Discharge Reactor[J]. Plasma Science and Technology, 2016, 18(8): 804-811. DOI: 10.1088/1009-0630/18/8/03
    [8]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [9]ZHENG Pingwei(郑平卫), GONG Xueyu(龚学余), YU Jun(余俊), DU Dan(杜丹). Fully Implicit Iterative Solving Method for the Fokker-Planck Equation in Tokamak Plasmas[J]. Plasma Science and Technology, 2014, 16(11): 1000-1006. DOI: 10.1088/1009-0630/16/11/02
    [10]CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05
  • Cited by

    Periodical cited type(24)

    1. Li, C., Zhao, T., Ren, W. et al. Quantitative analysis of copper-molybdenum slurries based on low energy pulse laser, combined with artificial neural network and principal component analysis. Minerals Engineering, 2024. DOI:10.1016/j.mineng.2024.109010
    2. Spencer, J., Squires, B., McWilliams, B. et al. Laser induced breakdown spectroscopy for composition monitoring of graded Al–Cu alloy surface. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.131375
    3. Zeng, Q.-D., Chen, G.-H., Li, W.-X. et al. Classification of Special Steel Based on LIBS Combined With Particle Swarm Optimization and Support Vector Machine | [基于粒子群M支持向量机算法的激光诱导 击穿光谱钢铁快速检测与分类]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(6): 1559-1565. DOI:10.3964/j.issn.1000-0593(2024)06-1559-07
    4. Han, B., Chen, Z., Feng, J. et al. Identification and classification of metal copper based on laser-induced breakdown spectroscopy. Journal of Laser Applications, 2023, 35(3): 032011. DOI:10.2351/7.0001051
    5. Akram, M.A., Holthe, R., Ringen, G. Rapid Sorting of Post-consumer Scrap Aluminium Alloys Based on Laser-Induced Breakdown Spectroscopy (LIBS). IFIP Advances in Information and Communication Technology, 2023. DOI:10.1007/978-3-031-43688-8_18
    6. Zeng, Q., Chen, G., Li, W. et al. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine. Plasma Science and Technology, 2022, 24(8): 084009. DOI:10.1088/2058-6272/ac72e3
    7. Xu, C., Li, F., Chen, F. et al. Rapid Classification of Laser Induced Breakdown Spectroscopy of Titanium Alloys | [钛合金的激光诱导击穿光谱快速分类]. Guangzi Xuebao/Acta Photonica Sinica, 2022, 51(4): 176-186. DOI:10.3788/gzxb20225104.0430001
    8. Chen, G., Zeng, Q., Li, W. et al. Classification of steel using laser-induced breakdown spectroscopy combined with deep belief network. Optics Express, 2022, 30(6): 9428-9440. DOI:10.1364/OE.451969
    9. Zhang, Q., Liu, Y. Review of In-situ Online LIBS Detection in the Atmospheric Environment. Atomic Spectroscopy, 2022, 43(2): 174-185. DOI:10.46770/AS.2021.609
    10. Chen, T., Sun, L., Yu, H. et al. Efficient weakly supervised LIBS feature selection method in quantitative analysis of iron ore slurry. Applied Optics, 2022, 61(7): D22-D29. DOI:10.1364/AO.441098
    11. Aberkane, S.M., Melikechi, N., Yahiaoui, K. LIBS Spectral Treatment. Chemometrics and Numerical Methods in LIBS, 2022. DOI:10.1002/9781119759614.ch4
    12. Pedarnig, J.D., Trautner, S., Grünberger, S. et al. Review of element analysis of industrial materials by in-line laser—induced breakdown spectroscopy (Libs). Applied Sciences (Switzerland), 2021, 11(19): 9274. DOI:10.3390/app11199274
    13. You, W., Xia, Y.-P., Huang, Y.-T. et al. Research on Selection Method of LIBS Feature Variables Based on CART Regression Tree | [基于CART回归树的LIBS特征变量选择方法研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2021, 41(10): 3240-3244. DOI:10.3964/j.issn.1000-0593(2021)10-3240-05
    14. Kim, H., Lee, J., Srivastava, E. et al. Front-end signal processing for metal scrap classification using online measurements based on laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106282
    15. Loibl, A., Tercero Espinoza, L.A. Current challenges in copper recycling: aligning insights from material flow analysis with technological research developments and industry issues in Europe and North America. Resources, Conservation and Recycling, 2021. DOI:10.1016/j.resconrec.2021.105462
    16. Wang, Y.-W., Zhang, Y., Chen, X.-F. et al. Application progress of laser-induced breakdown spectroscopy in online analysis of metal materials | [激光诱导击穿光谱在金属材料在线分析方面的应用进展]. Yejin Fenxi/Metallurgical Analysis, 2020, 40(12): 7-13. DOI:10.13228/j.boyuan.issn1000-7571.011179
    17. Zhang, Y., Sun, C., Yue, Z. et al. Correlation-based carbon determination in steel without explicitly involving carbon-related emission lines in a LIBS spectrum. Optics Express, 2020, 28(21): 32019-32032. DOI:10.1364/OE.404722
    18. Ytsma, C.R., Knudson, C.A., Dyar, M.D. et al. Accuracies and detection limits of major, minor, and trace element quantification in rocks by portable laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105946
    19. Kim, E., Kim, Y., Srivastava, E. et al. Soft classification scheme with pre-cluster-based regression for identification of same-base alloys using laser-induced breakdown spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2020. DOI:10.1016/j.chemolab.2020.104072
    20. Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002. DOI:10.1088/2058-6272/ab76b4
    21. Shin, S., Moon, Y., Lee, J. et al. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis. Plasma Science and Technology, 2020, 22(7): 074011. DOI:10.1088/2058-6272/ab7d48
    22. Srivastava, E., Jang, H., Shin, S. et al. Weighted-averaging-based classification of laser-induced breakdown spectroscopy measurements using most informative spectral lines. Plasma Science and Technology, 2020, 22(1): 015501. DOI:10.1088/2058-6272/ab481e
    23. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    24. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (187) PDF downloads (423) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return