Advanced Search+
Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
Citation: Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e

Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement

Funds: We acknowledge the support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11474129); Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC); the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province, China (2016, No. 400).
More Information
  • Received Date: January 07, 2018
  • Spatial confinement can significantly enhance the spectral intensity of laser-induced plasma in air. It is attributed to the compression of plasma plume by the reflected shockwave. In addition, optical emission spectroscopy of laser-induced plasma can also be affected by the distance between lens and sample surface. In order to obtain the optimized spectral intensity, the distance must be considered. In this work, spatially confined laser-induced silicon plasma by using a Nd: YAG nanosecond laser at different distances between lens and sample surface was investigated. The laser energies were 12 mJ, 16 mJ, 20 mJ, and 24 mJ. All experiments were carried out in an atmospheric environment. The results indicated that the intensity of Si (I) 390.55 nm line firstly rose and then dropped with the increase of lens-to-sample distance. Moreover, the spectral peak intensity with spatial confinement was higher than that without spatial confinement. The enhancement ratio was approximately 2 when laser energy was 24 mJ.
  • [1]
    Winefordner J D et al 2004 J. Anal. At. Spectrom. 19 1061
    [2]
    Vadillo J M and Laserna J J 2004 Spectrochim. Acta B: At. Spectrosc. 59 147
    [3]
    Chen A et al 2015 Phys. Plasmas 22 033301
    [4]
    Zhang H S, Yueh F Y and Singh J P 1999 Appl. Opt. 38 1459
    [5]
    Hahn D W and Lunden M M 2000 Aeros. Sci. Technol. 33 30
    [6]
    Yin W B et al 2009 Appl. Spectrosc. 63 865
    [7]
    Wang Y et al 2016 Plasma Sci. Technol. 18 1192
    [8]
    Noll R 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Berlin Heidelberg: Springer)
    [9]
    Hanson C, Phongikaroon S and Scott J R 2014 Spectrochim. Acta B: At. Spectrosc. 97 79
    [10]
    Harilal S S et al 2011 J. Appl. Phys. 109 063306
    [11]
    Le Drogoff B et al 2004 Plasma Sources Sci. Technol. 13 223
    [12]
    Wang Y et al 2017 AIP Adv. 7 095204
    [13]
    Kuzuya M and Mikami O 1990 Jpn. J. Appl. Phys. 29 1568
    [14]
    Wang Q X et al 2015 Appl. Opt. 54 8235
    [15]
    Sdorra W and Niemax K 1992 Microchim. Acta 107 319
    [16]
    Liu Y et al 2017 Plasma Sci. Technol. 19 125501
    [17]
    Zhou Y, Wu B X and Forsman A 2010 J. Appl. Phys. 108 093504
    [18]
    Hafez M A et al 2003 Plasma Sources Sci. Technol. 12 185
    [19]
    Aragón C, Campos J and Aguilera J A 1992 Appl. Spectrosc. 46 1382
    [20]
    Li X W et al 2013 J. Appl. Phys. 113 243304
    [21]
    Multari R A et al 1996 Appl. Spectrosc. 50 1483
    [22]
    Harilal S S et al 2009 Appl. Phys. Lett. 95 221501
    [23]
    Aguilera J A, Bengoechea J and Aragón C 2004 Spectrochim. Acta B: At. Spectrosc. 59 461
    [24]
    Shen X K et al 2007 Appl. Phys. Lett. 91 081501
    [25]
    Shen X K et al 2007 J. Appl. Phys. 102 093301
    [26]
    Guo L B et al 2013 Opt. Express 21 18188
    [27]
    Guo L B et al 2012 Opt. Express 20 1436
    [28]
    Guo L B et al 2011 Opt. Express 19 14067
    [29]
    Gao X et al 2015 J. Phys. D: Appl. Phys. 48 175205
    [30]
    Wang Y et al 2016 Spectrochim. Acta B: At. Spectrosc. 126 44
    [31]
    Li A et al 2017 Opt. Express 25 27559
    [32]
    Li X W et al 2017 J. Phys. D: Appl. Phys. 50 015203
    [33]
    Wang Y et al 2016 J. Anal. At. Spectrom. 31 1974
    [34]
    Meng D S et al 2015 Plasma Sci. Technol. 17 632
    [35]
    Diao C Y et al 2011 Eur. Phys. J. D 63 123
    [36]
    Voropay E and Ermalitskaia K 2011 Eur. Phys. J. D 64 453
    [37]
    Lagrange J-F, Wolfman J and Motret O 2012 J. Appl. Phys. 111 063301
    [38]
    Harilal S S et al 2015 Opt. Express 23 15608
    [39]
    Fu Y T, Hou Z Y and Wang Z 2016 Opt. Express 24 3055
    [40]
    Li C M et al 2014 J. Anal. At. Spectrom. 29 638
    [41]
    Yang Z F et al 2015 Phys. Plasmas 22 073511
    [42]
    Wang X W et al 2017 Phys. Plasmas 24 103305
    [43]
    Shao J F et al 2017 Plasma Sci. Technol. 19 25506
    [44]
    Su X J, Zhou W D and Qian H G 2014 J. Anal. At. Spectrom. 29 2356
    [45]
    Haq S U et al 2015 Phys. Plasmas 22 083504
    [46]
    Chen L M et al 2001 Phys. Plasmas 8 2925
    [47]
    Gamaly E G et al 2002 Phys. Plasmas 9 949
    [48]
    Cheng C W et al 2016 Appl. Surface Sci. 361 41
    [49]
    Aguilera J A, Aragón C and Pe?alba F 1998 Appl. Surface Sci. 127–129 309
    [50]
    Liu T-H et al 2014 Chin. Phys. B 23 085203

Catalog

    Article views (187) PDF downloads (423) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return