Advanced Search+
Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04
Citation: Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04

Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature

More Information
  • Received Date: January 17, 2016
  • During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes are struck and the burn-back phenomenon takes place. Usually, the silver ribbon is enclosed inside a cavity filled with silica sand. During the vaporization of the fuse element, one can consider that the volume is fixed so that the pressure increase appears to reach pressures higher than atmospheric pressure. Thus, in this paper two pressures, 1 atm and 10 atm, are considered. The electrical field inside the plasma can reach high values since the distance between the cathode surface and the anode surface varies with time. That is to say from zero cm to one cm order. So we consider various electrical fields: 102 V/m, 103 V/m, 5×103 V/m, 104 V/m at atmospheric pressure and 105 V/m at a pressure of 10 atm. This study is made in heavy species temperature range from 2,400 K to 10,000 K. To study the plasma created inside the electric fuse, we first need to determine some characteristics in order to justify some hypotheses. That is to say: are the classical approximations of the thermal plasmas physics justified? In other words: plasma frequency, the ideality of the plasma, the Debye-HÜckel approximation and the drift velocity versus thermal velocity. These characteristics and assumptions are discussed and commented on in this paper. Then, an evaluation of non-thermal equilibrium versus considered electrical fields is given. Finally, considering the high mobility of electrons, we evaluate the electrical conductivities.
  • 1 Gelet J L, Missiaen J M. 2003, Proceeding of the 7th International Conference on Electric Fuses and their Applications (ICEFA), profuseinternational, Gdansk p.78 2 Wright A, Newbery P G. 2004, Electric Fuses. IEE Power & Energy Series 49, British Library Cataloguing Data, London 3 Plesca A. 2012, Electric Power Systems Research, 83: 144 4 Rochette D, Bussiμere W, Touzzani R, et al. 2007, ICEFA, 10th International Conference on Electric Fuses and their Applications, Clermont-Ferrand France, IEEE Catalog Number: 07EX1870, p.87 5 Bussiμere W. 2012, IOP Conf. Ser.: Mater. Sci. Eng.,28: 012001 6 Gounaridis N, Douvris V P, Psomopoulos C S, et al.2014, Conference IET MedPower, Athena, Greece.DOI: 10.13140/2.1.1790.0488 7 Rochette D, Touzani R, Bussiμere W. 2007, J. Phys. D:Appl. Phys., 40: 4544 8 Bussiμere W, Rochette D, Velleaud G, et al. 2008, J.Phys. D: Appl. Phys., 41: 13 9 Barrow D R, Howe A F, Cook N. 1991, IEE Proceeding A, 138: 83 10 Psomopoulos C S, Karagiannopolous C G. 2002, Measurement, 32: 15 11 Rochette D, Bussiμere W, Andre P. 2004, Plasma Chemistry and Plasma Processing, 24: 475 12 Ranjan R, Barrault M R. 1980, IEE Proceedings C, Generation, Transmission and Distribution, 127: 199 13 Rochette D, Bussiμere W. 2004, Plasma Source Sciences and Technology, 13: 293 14 Rax J M. 2005, Physique des Plasmas, DUNOD Paris 15 Fridman A and Kennedy L A. 2004, Plasma Physics and Engineering. Taylor and Francis, London 16 Fortov V E, Iakubov I T, Khrapak A G. 2006, Physics of Strongly Coupled Plasma. Clarendon Press, Oxford 17 Boulos M I, Fauchais P, Pfender E. 1994, Thermal Plasmas. Plenum Press, New York 18 Drawin H W. 1970, High Pressure High Temperature, 2: 359 19 Wang W, Yan J D, Rong M, et al. 2013, J. Phys. D: Appl. Phys., 46: 065203 20 Wang W Z, Rong M Z, Yan J D, et al. 2011, Phys. Plasmas, 18: 113502 21 Murphy A B. 2000, Plasma Chemistry and Plasma Processing, 20: 279 22 Andre P, Bussiμere W, Rochette D. 2007, Plasma Chemistry and Plasma Processing, 27: 381 23 Ghorui S and Das A K. 2013, Physics of Plasmas, 20: 093504 24 Zarghoul M R, Bourham M A, Doster J M. 2000, J. Phys. D: Appl. Phys., 33: 977 25 Griem H S. 1962, Physical Review, 128: 997 26 Rat V, Murphy A B, Aubreton J, et al. 2008, J. Phys.D: Appl. Phys., 41: 183001 27 Capitelli M, Colonna G, d'Angola A. 2012,Fundamental Aspects of Plasma Chemical Physics, Springer Series on Atomic, Optical and Plasma Physic, London 28 Andre P. 1995, IEEE Transactions on Plasma Science, 23: 453 29 Andre P, Aubreton J, Elchinger M F, et al. 2004, Plasma Chemistry and Plasma Processing, 24 : 435 30 Cheron B. 2001, Theorie cinetique des gaz, Ellipse Edition, France (in French) 31 Mason E A, Munn R J, Smith Francis J. 1967, The Physics of Fluids, 10: 1827 32 Devoto R S. 1973, The Physics of Fluids, 16: 616 33 Fricke B. 1986, J. Chem. Phys., 84: 862 34 Mayol R, Salvat F. 1997, Atomic Data and Nuclear Data Tables, 65: 55 35 Andre P. 2005, Colloque sur les arcs electriques, p.37-42, http://hal.ccsd.cnrs.fr. (in French) 36 Aubreton A, Elchinger M F. 2003, J. Phys. D: Appl. Phys. 36: 1798 37 Trajmar S, Williams W, Srivastava S K. 1977, J. Phys. B: Molec. Phys., 10: 3323 38 Msezane Alfred Z, Henry Ronald J W. 1986, Physical Review A, 33: 1631 39 Scheibner K F, Hazi A U. 1987, Physical Review A, 35: 4869 40 Hirschfelder O, Curtiss C F, Byron Bird R. 1964, 819 Plasma Science and Technology, Vol.18, No.8, Aug. 2016 Molecular Theory of Gases and Liquids. New York, Wiley 41 Cressault Y, Gleizes A and Riquel G. 2012, J. Phys.D: Appl. Phys., 45: 265202 42 Schram D C. 2009, Plasma Sources Sci. Technol., 18:014003 43 Wang W Z, Rong M Z and Spencer J W. 2013, Phys.Plasmas, 20: 113504 44 Yeekinchoi E, Bourda C, Benjemaa N, et al. 2015,International Journal of Technology, Innovation, Physics, Energy and Environment, 1: 3 (in French)
  • Related Articles

    [1]M REDOLFI, N BLIN-SIMIAND, X DUTEN, S PASQUIERS, K HASSOUNI. Naphthalene oxidation by different non-thermal electrical discharges at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(5): 55503-055503. DOI: 10.1088/2058-6272/ab01c7
    [2]Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
    [3]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [4]Le Chi KIEN. Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator[J]. Plasma Science and Technology, 2016, 18(6): 674-679. DOI: 10.1088/1009-0630/18/6/15
    [5]CHEN Qi (陈琪), YAN Limin (闫丽敏), ZHANG Hao (张浩), LI Guoxiu (李国岫). Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields[J]. Plasma Science and Technology, 2016, 18(5): 569-576. DOI: 10.1088/1009-0630/18/5/21
    [6]CHANG Zhengshi (常正实), YAO Congwei (姚聪伟), ZHANG Guanjun (张冠军). Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet[J]. Plasma Science and Technology, 2016, 18(1): 17-22. DOI: 10.1088/1009-0630/18/1/04
    [7]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [8]M. ANWARI, H. H. QAZI, SUKARSAN, N. HARADA. Numerical Analysis of MHD Accelerator with Non-Equilibrium Air Plasma[J]. Plasma Science and Technology, 2012, 14(12): 1110-1115. DOI: 10.1088/1009-0630/14/12/14
    [9]Géraldine FAURE. Partition functions for diatomic molecules in plasmas out of thermal equilibrium[J]. Plasma Science and Technology, 2012, 14(3): 192-200. DOI: 10.1088/1009-0630/14/3/03
    [10]FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582.

Catalog

    Article views (338) PDF downloads (738) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return