Advanced Search+
YAO Shuiliang (姚水良), WENG Shan (翁珊), JIN Qi (金旗), HAN Jingyi (韩竞一), JIANG Boqiong (江博琼), WU Zuliang (吴祖良). Equation of Energy Injection to a Dielectric Barrier Discharge Reactor[J]. Plasma Science and Technology, 2016, 18(8): 804-811. DOI: 10.1088/1009-0630/18/8/03
Citation: YAO Shuiliang (姚水良), WENG Shan (翁珊), JIN Qi (金旗), HAN Jingyi (韩竞一), JIANG Boqiong (江博琼), WU Zuliang (吴祖良). Equation of Energy Injection to a Dielectric Barrier Discharge Reactor[J]. Plasma Science and Technology, 2016, 18(8): 804-811. DOI: 10.1088/1009-0630/18/8/03

Equation of Energy Injection to a Dielectric Barrier Discharge Reactor

Funds: supported by National Natural Science Foundation of China (No. 11575159), Zhejiang Provincial Natural Science Foundation of China (No. LY13B070004), Program for Zhejiang Leading Team of S&T Innovation (No. 2013TD07), and National Natural Science Foundation of China (No. 51206146)
More Information
  • Received Date: September 28, 2015
  • The electric energy injection from a pulsed power supply to a planar type of dielectric barrier discharge (DBD) reactor at atmospheric pressure was studied. Relations of the energy injection with barrier materials, barrier thickness, peak voltage, gap distance, electrode area, and operation temperature were experimentally investigated. The energy injection is a function of relative permittivity, barrier thickness, peak voltage, gap distance, and electrode area. The influence of operation temperature on energy injection is slight in the range of 27–300oC but becomes obvious in the range of 300–500oC. A model was established using which the energy injection can be easily predicted.
  • 1 Wei L, Yuan D, Zhang Y, et al. 2014, Eur. Phys. J. D, 68: 17 2 Sung T L, Teii S, Liu C M, et al. 2013, Vacuum, 90: 65 3 Das T N, Dey G R. 2013, Journal of Hazardous Materials, 248-249: 469 4 Zhang X, Cha M S. 2015, Proc. Combust. Inst., 35: 3447 5 Liang P, Jiang W, Zhang L, et al., 2015, Process Saf. Environ. Prot., 94: 380 6 Jahanmiri A, RahimpourMR, Mohamadzadeh Shirazi M, et al. 2012, Chem. Eng. J., 191: 416 7 Zhao D Z, Shi C, Li X S, et al. 2012, Journal of Hazardous Materials, 239-240: 362 8 Wang H, Li D, Wu Y, et al. 2009, J. Electrostat., 67: 547 9 Xu X, Wang P, Xu W, et al. 2016, Chem. Eng. J., 283: 276 10 Xiao G, Xu W, Wu R, et al. 2014, Plasma Chem. Plasma Process., 34: 1033 11 Aggelopoulos C A, Svarnas P, Klapa M I, et al. 2015, Chem. Eng. J., 270: 428 12 Balc3o?glu I A, Sara?c C, K3v3lc3mdan C, et al. 2006, Ozone: Sci. Eng., 28: 431 13 Heuer K, Ho?manns M A, Demir E, et al. 2015, Nitric Oxide, 44: 52 14 Xu J, Zhang C, Shao T, et al. 2014, J. Electrostat., 71: 435 15 Shahidi S, Ghoranneviss M, Shariˉ S D. 2014, J. Fusion Energ., 33: 177 16 Naito S, Takahara H. 2006, Ozone: Sci. Eng., 28: 425 17 Moscosa-Santillan M, Vincent A, Santirso E, et al. 2008, J. Clean. Prod., 16: 198 18 Obradovic B M, Sretenovic G B, Kuraica M M. 2011, J. Hazard. Mater., 185: 1280 19 Fu M, Lin J, Zhu W, et al. 2014, J. Rare Earths, 32: 153 20 Tang X, Lu H, Lin L, et al. 2013, Plasma Chem. Plasma Process., 33: 281 21 Kriegseis J, M?oller B, Grundmann S, et al. 2001, J. Electrostat., 69: 302 22 Zhang C, Shao T, Yu Y, et al. 2010, J. Electrostat., 68: 445 23 Manley T C. 1943, Trans. Electrochem. Soc., 84: 83 24 Yao S, Wu Z, Han J, et al. 2015, J. Electrostat., 75: 35 25 Shao T, Long K, Zhang C, et al. 2009, J. Electrostat., 67: 215 26 Shao T, Zhang C, Fang Z, et al. 2010, IEEE Trans. Plasma Sci., 41: 3069 27 Fridman A, Chirokov A, Gutsol A. 2005, J. Phys. D: Appl. Phys., 38: R1 28 Johnson T V. 2010, SAE Int. J. Fuels Lubr, 3: 16 29 Chen L Y, Hunter G W. 2004, Temperature dependent dielectric properties of polycrystalline 96%Al2O3. MRS Fall Meeting, Boston, MA 30 Chang J S, Kelly A J, Crowley J M. 1995, Handbook of Electrostatic Processes. Marcel Dekker, Inc., New York
  • Related Articles

    [1]Chengxian PAN (潘呈献), Zhengming SHI (施政铭), Qianhan HAN (韩乾翰), Ying GUO (郭颖), Jianjun SHI (石建军). Numerical simulation of atmospheric pulse-modulated radio-frequency glow discharge ignition characteristics assisted by a pulsed discharge[J]. Plasma Science and Technology, 2020, 22(1): 15405-015405. DOI: 10.1088/2058-6272/ab4d7d
    [2]Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661
    [3]Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [6]ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02
    [7]CUI Xuewu (崔学武), PAN Yudong (潘宇东), LI Jiaxian (李佳鲜), ZHANG Jinhua (张锦华), MAO Rui (毛瑞). Simulation Study for Divertor Geometry and Gas Puffng to Handle Huge Exhaust Power in HL-2M with SOLPS5.0[J]. Plasma Science and Technology, 2013, 15(6): 489-492. DOI: 10.1088/1009-0630/15/6/01
    [8]ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13
    [9]WU Junhui, WANG Xiaohua, MA Zhiying, RONG Mingzhe, YAN Jing. Numerical Simulation of Gas Flow during Arcing Process for 252kV Puffer Circuit Breakers[J]. Plasma Science and Technology, 2011, 13(6): 730-734.
    [10]WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.

Catalog

    Article views (367) PDF downloads (781) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return