Advanced Search+
WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.
Citation: WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.

Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges

Funds: supported by National Natural Science Foundation of China (No.50907053) and State Key Laboratory of Electrical Insulation and Power Equipment of China(EIPE 10305)
More Information
  • Received Date: July 20, 2011
  • A 1-D fluid model for homogenous Dielectric Barrier Discharge (DBD) in helium is presented, aimed at unraveling the spatial-temporal characteristics of two basic discharge regimes: single-breakdown and multi-breakdown discharges. Discharge currents, gap voltages, charge densities, electron temperature and electric field profiles of the two regimes make it clear that these two regimes are qualitatively different. It is found that the multi-breakdown discharge has a more homogenous flux on dielectrics compared to the single-breakdown discharge.
  • Related Articles

    [1]Aigerim TAZHEN, Merlan DOSBOLAYEV, Tlekkabul RAMAZANOV. Investigation of self-generated magnetic field and dynamics of a pulsed plasma flow[J]. Plasma Science and Technology, 2022, 24(5): 055403. DOI: 10.1088/2058-6272/ac5018
    [2]Qianyu ZHOU (周乾宇), Liqing TONG (童立青), Kefu LIU (刘克富). Research of magnetic self-balance used in a repetitive high voltage rectangular waveform pulse adder[J]. Plasma Science and Technology, 2018, 20(1): 14007-014007. DOI: 10.1088/2058-6272/aa8e93
    [3]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [4]WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04
    [5]HU Guanghai (胡广海), JIN Xiaoli (金晓丽), YUAN Lin (袁林), ZHANG Qiaofeng (张乔枫), XIE Jinlin (谢锦林), LI Hong (李弘), LIU Wandong (刘万东). Oxide Coated Cathode Plasma Source of Linear Magnetized Plasma Device[J]. Plasma Science and Technology, 2016, 18(9): 918-923. DOI: 10.1088/1009-0630/18/9/08
    [6]WANG Xiaoyu (王晓玉), FAN Yuwei (樊玉伟). Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator[J]. Plasma Science and Technology, 2015, 17(10): 893-896. DOI: 10.1088/1009-0630/16/17/10/14
    [7]WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16
    [8]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [9]ZHAO Xiaoling(赵小令), CHEN Shixiu(陈仕修), CHEN Kun(陈堃), CHEN Bokai(陈柏恺). Best Magnetic Condition to Generate Hollow Cathode Glow Plasma in High Vacuum[J]. Plasma Science and Technology, 2014, 16(1): 21-25. DOI: 10.1088/1009-0630/16/1/05
    [10]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
  • Cited by

    Periodical cited type(6)

    1. Li, Y., Ou, Y., Wu, J. et al. Experimental Investigation on Plume Characteristics of PTFE-Filled Carbon, Graphite, Graphene for Laser-Assisted Pulsed Plasma Thruster. Applied Sciences (Switzerland), 2023, 13(16): 9283. DOI:10.3390/app13169283
    2. Li, Y., Ou, Y., Wu, J. et al. Dynamic simulation on laser-metal interaction in laser ablation propulsion considering moving interface, finite thermal wave transfer, and phase explosion. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2023.03.039
    3. Peng, Z., Li, Z., Song, F. et al. Ion Electric Propulsion System Electric Breakdown Problems: Causes, Impacts and Protection Strategies. IEEE Access, 2023. DOI:10.1109/ACCESS.2023.3312719
    4. Xu, Y., Yang, L., Zhou, D. et al. Experimental study on the dynamics and parameters of nanosecond laser-induced aluminum plasma. Journal of Physics D: Applied Physics, 2022, 55(32): 325201. DOI:10.1088/1361-6463/ac6a27
    5. Ou, Y., Wu, J., Zhang, Y. et al. A predictive model for macro-performances applied to laser-assisted pulsed plasma thrusters. Physics of Plasmas, 2022, 29(1): 013506. DOI:10.1063/5.0073678
    6. Tang, H., Yu, D., Wang, H. et al. Special issue on selected papers from CEPC 2020. Plasma Science and Technology, 2021, 23(10): 100101. DOI:10.1088/2058-6272/ac22f7

    Other cited types(0)

Catalog

    Article views (571) PDF downloads (310) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return