Advanced Search+
Kefeng SHANG (商克峰), Qi ZHANG (张琦), Na LU (鲁娜), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation[J]. Plasma Science and Technology, 2019, 21(7): 75502-075502. DOI: 10.1088/2058-6272/ab0d3c
Citation: Kefeng SHANG (商克峰), Qi ZHANG (张琦), Na LU (鲁娜), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation[J]. Plasma Science and Technology, 2019, 21(7): 75502-075502. DOI: 10.1088/2058-6272/ab0d3c

Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation

Funds: Thanks for the support of National Natural Science Foundation of China (No. 21577011).
More Information
  • Received Date: December 17, 2018
  • A double-chamber gas-liquid phase DBD reactor (GLDR), consisting of a gas-phase discharge chamber and a gas-liquid discharge chamber in series, was designed to enhance the degradation of benzene and the emission of NOx. The performance of the GLDR on discharge characteristics, reactive species production and benzene degradation was compared to that of the single-chamber gas phase DBD reactor (GPDR). The effects of discharge gap, applied voltage, initial benzene concentration, gas flow rate and solution conductivity on the degradation and energy yield of benzene in the GLDR were investigated. The GLDR presents a higher discharge power, higher benzene degradation and higher energy yield than that of the GPDR. NO2 emission was remarkably inhibited in the GLDR, possibly due to the dissolution of NO2 in water. The benzene degradation efficiency increased with the applied voltage, but decreased with the initial concentration, gas flow rate, and gas discharge gap, while the solution conductivity presented less influence on benzene degradation. The benzene degradation efficiency and the energy yield reached 61.11% and 1.45 g kWh–1 at 4 mm total gas discharge gap, 15 kV applied voltage, 200 ppm benzene concentration, 0.2 L min−1 gas flow rate and 721 μS cm−1 water conductivity. The intermediates and byproducts during benzene degradation were detected by FT-IR, GC-MS and LC-MS primarily, and phenols, COx, and other aromatic substitutes, O3, NOx, etc, were determined as the main intermediates. According to these detected byproducts, a possible benzene degradation mechanism was proposed.
  • [1]
    Chen H L et al 2009 Environ. Sci. Technol. 43 2216
    [2]
    Kim B R 2011 Environ. Eng. Res. 16 1
    [3]
    Van Durme J et al 2008 Appl. Catal. B 78 324
    [4]
    Shang K et al 2017 Chem. Eng. J. 311 378
    [5]
    Guo H et al 2019 Appl. Catal. B 248 552
    [6]
    Shang K et al 2019 Sep. Purif. Technol. 218 106
    [7]
    Shang K et al 2019 Plasma Sci. Technol. 21 043001
    [8]
    Liang W et al 2013 Chemosphere 92 1390
    [9]
    Ye S Y et al 2013 Chem. Eng. J. 225 499
    [10]
    Xu X X et al 2016 Chem. Eng. J. 283 276
    [11]
    Guo L J et al 2018 Front. Environ. Sci. Eng. 12 15
    [12]
    Hu J et al 2016 Chem. Eng. J. 293 216
    [13]
    Karuppiah J et al 2012 J. Hazard. Mater. 237-238 283
    [14]
    Sekiguchi H 2001 Can. J. Chem. Eng. 79 512
    [15]
    Chang T et al 2018 Chem. Eng. J. 348 15
    [16]
    Birdsall C M, Jenkins A C and Spadinger E 1952 Anal. Chem. 24 662
    [17]
    Singh P et al 2019 Talanta 191 364
    [18]
    State Environmental Protection Agency and State Bureau of Technical Supervision Ambient air-Determination of Ozone- Indigo Disulphonate Spectrophotometry: HJ 504-2009 (Beijing: China Standards Publishing House) (in Chinese)
    [19]
    Sellers R M 1980 Analyst 105 950
    [20]
    Lukes P, Appleton A T and Locke B R 2004 IEEE Trans. Ind. Appl. 40 60
    [21]
    Shang K F et al 2017 Plasma Sci. Technol. 19 064017
    [22]
    Lukes P et al 2005 J. Phys. D: Appl. Phys. 38 409
    [23]
    Shang K F et al 2016 Jpn. J. Appl. Phys. 55 01AB02
    [24]
    Ye Z L et al 2008 J. Hazard. Mater. 156 356
    [25]
    Rodrigues A, Tatibou?t J M and Fourré E 2016 Plasma Chem. Plasma Process. 36 901
    [26]
    Yi H H et al 2018 Plasma Chem. Plasma Process. 38 331
    [27]
    Satoh K, Nagao K and Itoh H 2012 Trans. Mater. Res. Soc. Japan 37 151
    [28]
    Lee B Y et al 2004 Catal. Today 93-95 769
    [29]
    Kim H H et al 2005 Appl. Catal. B Environ. 56 213
    [30]
    Ogata A et al 1999 IEEE Trans. Ind. Appl. 35 753
    [31]
    Ma T P et al 2016 Plasma Sci. Technol. 18 686 Figure 12. Possible pathway of benzene degradation in the GLDR. 10
  • Related Articles

    [1]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [2]Xinlei ZHU (朱鑫磊), Liancheng ZHANG (张连成), Yifan HUANG (黄逸凡), Jin WANG (王晋), Zhen LIU (刘振), Keping YAN (闫克平). The effect of the configuration of a single electrode corona discharge on its acoustic characteristics[J]. Plasma Science and Technology, 2017, 19(7): 75403-075403. DOI: 10.1088/2058-6272/aa6716
    [3]LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
    [4]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [5]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [6]REN Jingyu (任景俞), WANG Tiecheng (王铁成), QU Guangzhou (屈广周), LIANG Dongli (梁东丽), HU Shibin (呼世斌). Evaluation and Optimization of Electrode Configuration of Multi-Channel Corona Discharge Plasma for Dye-Containing Wastewater Treatment[J]. Plasma Science and Technology, 2015, 17(12): 1053-1060. DOI: 10.1088/1009-0630/17/12/13
    [7]WANG Xiaoping(王小平), LI Zhongjian(李中坚), ZHANG Xingwang(张兴旺), LEI Lecheng(雷乐成). Characteristics of Electrode-Water-Electrode Discharge and its Application to Water Treatment[J]. Plasma Science and Technology, 2014, 16(5): 479-485. DOI: 10.1088/1009-0630/16/5/07
    [8]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [9]A. A. AZOOZ, M. A. AHMAD. The Effect of the Earthed Electrode Size on the Ignition Voltage of Low-Pressure RF Capacitive Discharge in Argon[J]. Plasma Science and Technology, 2013, 15(9): 881-884. DOI: 10.1088/1009-0630/15/9/09
    [10]LIU Wenzheng (刘文正), ZHANG Dejin (张德金), KONG Fei (孔飞). The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. DOI: 10.1088/1009-0630/14/2/08

Catalog

    Article views (150) PDF downloads (217) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return