Advanced Search+
WANG Xiaoping(王小平), LI Zhongjian(李中坚), ZHANG Xingwang(张兴旺), LEI Lecheng(雷乐成). Characteristics of Electrode-Water-Electrode Discharge and its Application to Water Treatment[J]. Plasma Science and Technology, 2014, 16(5): 479-485. DOI: 10.1088/1009-0630/16/5/07
Citation: WANG Xiaoping(王小平), LI Zhongjian(李中坚), ZHANG Xingwang(张兴旺), LEI Lecheng(雷乐成). Characteristics of Electrode-Water-Electrode Discharge and its Application to Water Treatment[J]. Plasma Science and Technology, 2014, 16(5): 479-485. DOI: 10.1088/1009-0630/16/5/07

Characteristics of Electrode-Water-Electrode Discharge and its Application to Water Treatment

Funds: supported by National Natural Science Foundation of China (Nos. 21076188, 21076189, U1162128)
More Information
  • Received Date: January 14, 2013
  • Atmospheric air discharge above the surface of water is an effective method for water treatment. The leakage current and Joule heating of water are reduced by the air gap, which raises the energy efficiency of the water treatment. However, the application of this kind of discharge is limited by a pair of conflicting factors: the chemical efficiency grows as the discharge gap distance decreases, while the spark breakdown voltage decreases as the gap distance decreases. To raise the spark breakdown voltage and the chemical efficiency of atmospheric pressure water surface discharge, both the high-voltage electrode and the ground electrode are suspended above the water surface to form an electrode-water-electrode discharge system. For this system, there are two potential discharge directions: from one electrode to another directly, and from the electrodes to the water surface. The first step in utilizing the electrode-water-electrode discharge is to find out the discharge direction transition criterion. In this paper, the discharge direction transition criterions of spark discharge and streamer discharge are presented. By comparing the discharge characteristics and the chemical efficiencies, the discharge propagating from the electrodes to the water surface is proved to be more suitable for water treatment than that propagating directly between the electrodes.
  • 1. Hoeben W F L M, Veldhuizen E M, Rutgers W R,et al. 1999, J. Phys. D: Appl. Phys., 32: 133
    2. Sato M, Tokutake T, Ohshima T, et al. 2008, IEEE Trans. Ind. Applicat., 44: 1397
    3. Krause H, Schweiger B, Schuhmacher J, et al. 2009, Chemosphere, 75: 163
    4. Kadowaki K, Sone T, Kamikozawa T, et al. 2009, Biosci. Biotechnol. Biochem., 73: 1978
    5. Bruggeman P, Slychen J V, Degroote J, et al. 2008, IEEE Trans. Plasma Sci., 36: 1138
    6. Bozhko I B, Kondratenko I P, Serdyuk Y V. 2011, IEEE Trans. Plasma Sci., 39: 1228
    7. Bruggeman P, Graham L, Degroote J, et al. 2007, J. Phys. D: Appl. Phys., 40: 4779
    8. Nikiforov A Y, Leys C. 2006, Czech J. Phys., 56: B952
    9. Laroussi M, Alexe. I, Richardson J P, et al. 2002, IEEE Trans. Plasma Sci., 30: 158
    10. Laroussi M, Malott C M, Lu X P. 2002, Conference Record of the Twenty-Fifth International Power Mod-ulator Symposium and 2002 High-Voltage Workshop, Hollywood,California, USA, p.556
    11. Stephan K D, Ghimire S, Smith R K, et al. 2011, IEEE Trans. Plasma Sci., 39: 1919
    12. Thiyagarajan M, Alexe. I, Parameswaran S, et al. 2005, IEEE Trans. Plasma Sci., 33: 322
    13. Uhm H S, Kang J G, Choi E H, et al. 2012, J. Korean Phys. Soc., 61: 551
    14. Balasundaram A, Alexe. I, Pradeep E P, et al. 2007, IEEE 34th International Conference on Plasma Sci-ence, Albuquerque, New Mexcico, USA, p.314
    15. Shi N, Zhang X W, Lei L C. 2009, Sep. Purif. Technol.,70: 212
    16. Vidal B F, Ollero P. 2001, Enviro. Sci. Technol., 35: 2792
  • Related Articles

    [1]Wenzheng LIU (刘文正), Ying BAO (包颖), Xiaoxia DUAN (段晓霞), Jian ZHANG (张坚). Study on water treatment effect of dispersion discharge plasma based on flowing water film electrode[J]. Plasma Science and Technology, 2021, 23(10): 105502. DOI: 10.1088/2058-6272/ac15ed
    [2]Hafiz Imran Ahmad QAZI, Yiying XIN (辛怡颖), Muhammad Ajmal KHAN, Heping LI (李和平), Lu ZHOU (周律), Chengyu BAO (包成玉). Physicochemical properties of the AC-excited helium discharges using a water electrode[J]. Plasma Science and Technology, 2018, 20(7): 75403-075403. DOI: 10.1088/2058-6272/aab4f2
    [3]Dan ZHAO (赵丹), Feng YU (于锋), Amin ZHOU (周阿敏), Cunhua MA (马存花), Bin DAI (代斌). High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 14020-014020. DOI: 10.1088/2058-6272/aa861c
    [4]Wenzheng LIU (刘文正), Tahan WANG (王踏寒), Xiaozhong CHEN (陈晓中), Chuanlong MA (马传龙). Characteristics and application of diffuse discharge of water electrode in air[J]. Plasma Science and Technology, 2018, 20(1): 14003-014003. DOI: 10.1088/2058-6272/aa8fc5
    [5]Xinlei ZHU (朱鑫磊), Liancheng ZHANG (张连成), Yifan HUANG (黄逸凡), Jin WANG (王晋), Zhen LIU (刘振), Keping YAN (闫克平). The effect of the configuration of a single electrode corona discharge on its acoustic characteristics[J]. Plasma Science and Technology, 2017, 19(7): 75403-075403. DOI: 10.1088/2058-6272/aa6716
    [6]Lele WANG (王乐乐), XiutaoHUANG (黄修涛), Junfeng CHEN (陈俊峰), Shengming WANG (王圣明), Zhaoyang HU (胡朝阳), Minghai LIU (刘明海). Simulated and experimental studies on the array dielectric barrier discharge of water electrodes[J]. Plasma Science and Technology, 2017, 19(3): 35402-035402. DOI: 10.1088/2058-6272/19/3/035402
    [7]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [8]Vadym PRYSIAZHNYI, Pavel SLAVICEK, Eliska MIKMEKOVA, Milos KLIMA. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil[J]. Plasma Science and Technology, 2016, 18(4): 430-437. DOI: 10.1088/1009-0630/18/4/17
    [9]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [10]WANG Xiaoping (王小平), ZHANG Xingwang (张兴旺), LEI Lecheng (雷乐成). High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes[J]. Plasma Science and Technology, 2013, 15(6): 528-534. DOI: 10.1088/1009-0630/15/6/08

Catalog

    Article views (310) PDF downloads (1077) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return