Advanced Search+
Hafiz Imran Ahmad QAZI, Yiying XIN (辛怡颖), Muhammad Ajmal KHAN, Heping LI (李和平), Lu ZHOU (周律), Chengyu BAO (包成玉). Physicochemical properties of the AC-excited helium discharges using a water electrode[J]. Plasma Science and Technology, 2018, 20(7): 75403-075403. DOI: 10.1088/2058-6272/aab4f2
Citation: Hafiz Imran Ahmad QAZI, Yiying XIN (辛怡颖), Muhammad Ajmal KHAN, Heping LI (李和平), Lu ZHOU (周律), Chengyu BAO (包成玉). Physicochemical properties of the AC-excited helium discharges using a water electrode[J]. Plasma Science and Technology, 2018, 20(7): 75403-075403. DOI: 10.1088/2058-6272/aab4f2

Physicochemical properties of the AC-excited helium discharges using a water electrode

Funds: This work has been supported by the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2014ZX07215-001) and partly by National Natural Science Foundation of China (Nos. 11475103, 51578309).
More Information
  • Received Date: November 28, 2017
  • In this paper, the AC-excited helium discharges generated between the powered needle electrode enclosed in a conical quartz tube and the grounded de-ionized water electrode are investigated. The current and voltage waveforms exhibit a transition from the glow-like to streamer-like mode discharges, which forms a stable cone-shaped structure at the gas–liquid interface. In this region, the air and water vapor diffusion initiate various physical–chemical processes leading to substantial changes of the primary species emission intensities (e.g., OH, N2, NO, and O) and the rotational temperatures. The experimentally measured rotational temperature at the gas–liquid interface is 870 K from the N2(C–B) band with a power input of 26 W. With the prolongation of the discharge time, significant changes in the discharge voltage and current, discharge emission patterns, instantaneous concentrations of the secondary species (e.g., H2O2, and ) in the liquid phase, pH values and electrical conductivities of the liquids are observed experimentally. The present study is helpful for deepening the understandings to the basic physical–chemical processes in the discharges in contact with liquids, especially to those occurring in the vicinity of the gas–liquid interface, and also for promoting existing and potential applications of such type of discharges in the fields of environmental protection, biomedicine, agriculture, and so on.
  • [1]
    Tatarova E et al 2014 Plasma Sources Sci. Technol. 23 063002
    [2]
    Lukes P et al 2014 Plasma Sources Sci. Technol. 23 015019
    [3]
    Park D P et al 2013 Curr. Appl. Phys. 13 S19
    [4]
    Mariotti D et al 2012 Plasma Process. Polym. 9 1074
    [5]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [6]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [7]
    Liu D X et al 2016 Sci. Rep. 6 23737
    [8]
    Zheng P et al 2015 Plasma Sources Sci. Technol. 24 015010
    [9]
    Bruggeman P et al 2008 Plasma Sources Sci. Technol. 17 025012
    [10]
    Chen Q et al 2008 Thin Solid Films 516 6688
    [11]
    Ognier S et al 2009 Plasma Chem. Plasma Process. 29 261
    [12]
    Bruggeman P et al 2008 J. Phys. D: Appl. Phys. 41 215201
    [13]
    Mezei P, Cserfalvi T and Csillag L 2005 J. Phys. D: Appl. Phys. 38 2804
    [14]
    Qazi H I A et al 2015 Phys. Plasmas 22 123512
    [15]
    Wang J et al 2016 Plasma Sci. Technol. 18 370
    [16]
    Lukes P and Locke B R 2005 J. Phys. D: Appl. Phys. 38 4074
    [17]
    Locke B R and Shih K-Y 2011 Plasma Sources Sci. Technol. 20 034006
    [18]
    van Gessel A F H, Alards K M J and Bruggeman P J 2013 J. Phys. D: Appl. Phys. 46 265202
    [19]
    Kong M G et al 2009 New J. Phys. 11 115012
    [20]
    Chen Z et al 2016 Plasma Process. Polym. 13 1151
    [21]
    Cheng H et al 2016 High Volt. 1 62
    [22]
    Takaki K et al 2013 J. Phys.: Conf. Ser. 418 012140
    [23]
    ?unka P 2001 Phys. Plasmas 8 2587
    [24]
    Bruggeman P et al 2009 Plasma Process. Polym. 6 751
    [25]
    Titov V A et al 2006 Plasma Chem. Plasma Process. 26 543
    [26]
    Lu X P and Laroussi M 2005 IEEE Trans. Plasma Sci. 33 272
    [27]
    Sellers R M 1980 Analyst 105 950
    [28]
    Rice E W et al 2012 Standard Methods for the Examination of Water and Wastewater 22nd edn (Washington DC: American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF))
    [29]
    Sun B, Sato M and Clements J S 1997 J. Electrostat. 39 189
    [30]
    Park J Y et al 2006 J. Phys. D: Appl. Phys. 39 3805
    [31]
    Eichwald O et al 1997 J. Appl. Phys. 82 4781
    [32]
    Bibinov N K, Fateev A A and Wiesemann K 2001 J. Phys. D: Appl. Phys. 34 1819
    [33]
    Tsuji M et al 2003 Appl. Surf. Sci. 217 134
    [34]
    Liu D X et al 2016 High Volt. 1 81
    [35]
    Sublet A et al 2006 Plasma Sources Sci. Technol. 15 627
    [36]
    Verreycken T et al 2010 Plasma Sources Sci. Technol. 19 045004
    [37]
    Yamada H et al 2016 J. Phys. D: Appl. Phys. 49 394001
    [38]
    Rehman F, Lozano-Parada J H and Zimmerman W B 2012 Int. J. Hydrog. Energy 37 17678
    [39]
    de Izarra C 2000 J. Phys. D: Appl. Phys. 33 1697
    [40]
    Rabat H and de Izarra C 2004 J. Phys. D: Appl. Phys. 37 2371
    [41]
    Laux C O 2002 www.specair-radiation.net
    [42]
    Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
    [43]
    Chen B et al 2016 Plasma Sci. Technol. 18 41
    [44]
    Machala Z et al 2013 Plasma Process. Polym. 10 649
  • Related Articles

    [1]Qiuyun WANG (王秋云), Hongxia QI (齐洪霞), Xiangyu ZENG (曾祥榆), Anmin CHEN (陈安民), Xun GAO (高勋), Mingxing JIN (金明星). Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas[J]. Plasma Science and Technology, 2021, 23(11): 115504. DOI: 10.1088/2058-6272/ac183b
    [2]Lunjiang CHEN (陈伦江), Wenbo CHEN (陈文波), Chuandong LIU (刘川东), Honghui TONG (童洪辉), Qing ZHAO (赵青). Estimation of plasma parameters in the process of micro-scale powder plastic and characteristics of its products[J]. Plasma Science and Technology, 2019, 21(7): 74006-074006. DOI: 10.1088/2058-6272/ab00ac
    [3]H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
    [4]Feng XU (徐峰), Fang DING (丁芳), Xiahua CHEN (陈夏华), Liang WANG (王亮), Jichan XU (许吉禅), Zhenhua HU (胡振华), Hongmin MAO (毛红敏), Guangnan LUO (罗广南), Zhongshi YANG (杨钟时), Jingbo CHEN (陈竞博), Kedong LI (李克栋). Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor[J]. Plasma Science and Technology, 2018, 20(10): 105102. DOI: 10.1088/2058-6272/aad226
    [5]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [6]Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
    [7]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [8]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [9]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [10]HU Hui (胡辉), CHEN Weipeng(陈卫鹏), Zhang Jin-li (张锦丽), LU Xi (陆僖), HE Junjia(何俊佳). Influence of plasma temperature on the concentration of NO produced by pulsed arc discharge[J]. Plasma Science and Technology, 2012, 14(3): 257-262. DOI: 10.1088/1009-0630/14/3/13

Catalog

    Article views (217) PDF downloads (452) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return