Advanced Search+
Qiuyun WANG (王秋云), Hongxia QI (齐洪霞), Xiangyu ZENG (曾祥榆), Anmin CHEN (陈安民), Xun GAO (高勋), Mingxing JIN (金明星). Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas[J]. Plasma Science and Technology, 2021, 23(11): 115504. DOI: 10.1088/2058-6272/ac183b
Citation: Qiuyun WANG (王秋云), Hongxia QI (齐洪霞), Xiangyu ZENG (曾祥榆), Anmin CHEN (陈安民), Xun GAO (高勋), Mingxing JIN (金明星). Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas[J]. Plasma Science and Technology, 2021, 23(11): 115504. DOI: 10.1088/2058-6272/ac183b

Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas

Funds: We acknowledge the support of National Natural Science Foundation of China (Nos. 11674128, 11674124 and 11974138) and the Scientific and Technological Research Project of the Education Department of Jilin Province, China (No. JJKH20200937KJ).
More Information
  • Received Date: May 13, 2021
  • Revised Date: July 23, 2021
  • Accepted Date: July 26, 2021
  • In this paper, we investigate the time-resolved spectroscopy of collinear femtosecond (fs) and nanosecond (ns) dual-pulse (DP) laser-induced plasmas. A copper target was used as an experimental sample, and the fs laser was considered as the time zero reference point. The interpulse delay between fs and ns laser beams was 3 μs. First, we compared the time-resolved peak intensities of Cu (I) lines from Cu plasmas induced by fs+ns and ns+fs DP lasers with collinear configuration. The results showed that compared with the ns+fs DP, the fs+ns DP laser-induced Cu plasmas had stronger peak intensities and longer lifetimes. Second, we calculated time-resolved plasma temperatures using the Boltzmann plot with three spectral lines at Cu (I) 510.55, 515.32 and 521.82 nm. In addition, time-resolved electron densities were calculated based on Stark broadening with Cu (I) line at 521.82 nm. It was found that compared with ns+fs DP, the plasma temperatures and electron densities of the Cu plasmas induced by fs+ns DP laser were higher. Finally, we observed images of ablation craters under the two experimental conditions and found that the fs+ns DP laser-produced stronger ablation, which corresponded to stronger plasma emission.
  • [1]
    Wang Z et al 2014 Front. Phys. 9 419
    [2]
    Wang Z Z et al 2016 Front. Phys. 11 114213
    [3]
    Wang Z, Dong F and Zhou W 2015 Plasma Sci. Technol.17 617
    [4]
    Fu Y et al 2019 Plasma Sci. Technol. 21 030101
    [5]
    Zhang D et al 2019 Plasma Sci. Technol. 21 034009
    [6]
    Wang Y et al 2017 AIP Adv. 7 095204
    [7]
    Guo J et al 2017 J. Anal. At. Spectrom. 32 367
    [8]
    Zhang H, Yueh F Y and Singh J P 1999 Appl. Opt. 38 1459
    [9]
    Hahn D W and Omenetto N 2010 Appl. Spectrosc. 64 335A
    [10]
    Harmon R S et al 2006 Appl. Geochem. 21 730
    [11]
    Knight A K et al 2000 Appl. Spectrosc. 54 331
    [12]
    Wang X et al 2017 Phys. Plasmas 24 103305
    [13]
    Zhou W et al 2013 J. Anal. At. Spectrom. 28 702
    [14]
    Wang Y et al 2018 Spectrochim. Acta Part B: At. Spectrosc.150 9
    [15]
    Wang Q et al 2019 Plasma Sci. Technol. 21 065504
    [16]
    Gao X et al 2015 J. Phys. D: Appl. Phys. 48 175205
    [17]
    Shen X K et al 2007 Appl. Phys. Lett. 91 081501
    [18]
    Wang Q et al 2018 Phys. Plasmas 25 073301
    [19]
    Shen X K et al 2007 J. Appl. Phys. 102 093301
    [20]
    Guo L B et al 2011 Opt. Express 19 14067
    [21]
    Wang Y et al 2016 J. Anal. At. Spectrom. 31 1974
    [22]
    Wang Y et al 2016 Spectrochim. Acta Part B: At. Spectrosc.126 44
    [23]
    Asimellis G et al 2005 Spectrochim. Acta Part B: At.Spectrosc. 60 1132
    [24]
    Tavassoli S H and Gragossian A 2009 Opt. Laser Technol.41 481
    [25]
    Wang Y et al 2019 Plasma Sci. Technol. 21 034013
    [26]
    Wang Y et al 2017 Phys. Plasmas 24 013301
    [27]
    Pandey P K and Thareja R K 2013 Phys. Plasmas 20 022117
    [28]
    Harilal S S et al 2004 Phys. Rev. E 69 026413
    [29]
    Amoruso S, Bruzzese R and Wang X 2009 Appl. Phys. Lett. 95 251501
    [30]
    Oba M et al 2010 Appl. Phys. A 101 545
    [31]
    Lu Y et al 2013 J. Anal. At. Spectrom. 28 743
    [32]
    Santagata A et al 2008 Appl. Phys. A 93 929
    [33]
    Santagata A et al 2007 Appl. Surf. Sci. 253 7792
    [34]
    Oba M et al 2010 Appl. Phys. A Mater. Sci. Process. 101 545
    [35]
    Gondal M A et al 2009 J. Hazard. Mater. 163 1265
    [36]
    Nicolodelli G et al 2017 Microchem. J. 133 272
    [37]
    Wang Y et al 2016 Phys. Plasmas 23 113105
    [38]
    Freeman J R et al 2013 Spectrochim. Acta Part B: At.Spectrosc. 87 43
    [39]
    Li X et al 2019 Opt. Express 27 5755
    [40]
    Wang T et al 2015 Phys. Plasmas 22 033106
    [41]
    Semerok A and Dutouquet C 2004 Thin Solid Films 453–454 501
    [42]
    Bye C A and Scheeline A 1993 Appl. Spectrosc. 47 2022
    [43]
    Wang Y et al 2018 Phys. Plasmas 25 033302
    [44]
    Yang D P et al 2017 Acta Phys. Sin. 66 115201 (in Chinese)
    [45]
    Nakimana A et al 2013 J. Phys. D: Appl. Phys. 46 285204
    [46]
    Ciucci A et al 1999 Appl. Spectrosc. 53 960
    [47]
    Chen M et al 2012 Laser Phys. Lett. 9 730
    [48]
    Li X F, Zhou W D and Cui Z F 2012 Front. Phys. 7 721
    [49]
    Shakeel H et al 2016 Phys. Plasmas 23 053504
    [50]
    Wang Y et al 2020 Phys. Plasmas 27 023507
    [51]
    Konjević N and Wiese W L 1990 J. Phys. Chem. Ref. Data 19 1307
    [52]
    Ivković M and Konjević N 2017 Spectrochim. Acta Part B: At.Spectrosc. 131 79
    [53]
    Wang Q et al 2021 Plasma Sci. Technol. 23 045504
  • Related Articles

    [1]Zhihui ZOU, Ping ZHU, Charlson C KIM, Wei DENG, Xianqu WANG, Yawei HOU. Frequency multiplication with toroidal mode number of kink/fishbone modes on a static HL-2A-like tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124005. DOI: 10.1088/2058-6272/aca00a
    [2]Xingyuan XU (徐行远), Yingfeng XU (徐颖峰), Xiaodong ZHANG (张晓东), Youjun HU (胡友俊), Lei YE (叶磊), Xiaotao XIAO (肖小涛). Simulations of first-orbit losses of neutral beam injection (NBI) fast ions on EAST[J]. Plasma Science and Technology, 2020, 22(8): 85101-085101. DOI: 10.1088/2058-6272/ab8973
    [3]Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295
    [4]Kunihiro OGAWA, Mitsutaka ISOBE, Takeo NISHITANI, Sadayoshi MURAKAMI, Ryosuke SEKI, Hideo NUGA, Neng PU, Masaki OSAKABE, LHD Experiment Group. Study of first orbit losses of 1 MeV tritons using the Lorentz orbit code in the LHD[J]. Plasma Science and Technology, 2019, 21(2): 25102-025102. DOI: 10.1088/2058-6272/aaeba8
    [5]ZHENG Ting (郑婷), WU Bin (吴斌), XU Liqing (徐立清), HU Chundong (胡纯栋), ZANG Qing (臧庆), DING Siye (丁斯晔), LI Yingying (李颖颖), WU Xingquan (伍兴权), WANG Jinfang (王进芳), SHEN Biao (沈飙), ZHONG Guoqiang (钟国强), LI Hao (李昊), SHI Tonghui (石同辉), EAST Team. Fishbone Mode Excited by Deeply Trapped Energetic Beam Ions in EAST[J]. Plasma Science and Technology, 2016, 18(6): 595-600. DOI: 10.1088/1009-0630/18/6/03
    [6]HE Yihua (贺艺华), YANG Chang (杨昶), HE Zhaoguo (何兆国), ZHANG Zelong (张择龙), et al.. Observation and Modeling of Geostationary Orbit Electron Energization Induced by Enhanced Dayside Whistler-Mode Waves[J]. Plasma Science and Technology, 2013, 15(9): 866-870. DOI: 10.1088/1009-0630/15/9/06
    [7]QU Hongpeng (曲洪鹏). Ion-Banana-Orbit-Width Effect on Bootstrap Current for Small Magnetic Islands[J]. Plasma Science and Technology, 2013, 15(9): 852-856. DOI: 10.1088/1009-0630/15/9/03
    [8]WANG Zhongtian (王中天), WANG Long (王龙), LONG Yongxing (龙永兴), DONG Jiaqi (董家齐), HE Zhixiong (何志雄), LIU Yu (刘宇), TANG Changjian (唐昌建). Shaping Effects of the E-Fishbone in Tokamaks[J]. Plasma Science and Technology, 2013, 15(1): 12-16. DOI: 10.1088/1009-0630/15/1/03
    [9]WU Guojiang (吴国将), ZHANG Xiaodong (张晓东). Calculations of the Ion Orbit Loss Region at the Edge of EAST[J]. Plasma Science and Technology, 2012, 14(9): 789-793. DOI: 10.1088/1009-0630/14/9/03
    [10]GAO Zhe. Analytical Theory of the Geodesic Acoustic Mode in the Small and Large Orbit Drift Width Limits and its Application in a Study of Plasma Shaping Effect[J]. Plasma Science and Technology, 2011, 13(1): 15-20.
  • Cited by

    Periodical cited type(1)

    1. Hao, G., Xu, J., Sun, Y. et al. Summary of the 11th Conference on Magnetic Confined Fusion Theory and Simulation. Plasma Science and Technology, 2024, 26(10): 101001. DOI:10.1088/2058-6272/ad5d8a
    1. Hao, G., Xu, J., Sun, Y. et al. Summary of the 11th Conference on Magnetic Confined Fusion Theory and Simulation. Plasma Science and Technology, 2024, 26(10): 101001. DOI:10.1088/2058-6272/ad5d8a

    Other cited types(0)

Catalog

    Article views (114) PDF downloads (116) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return