Advanced Search+
Kunihiro OGAWA, Mitsutaka ISOBE, Takeo NISHITANI, Sadayoshi MURAKAMI, Ryosuke SEKI, Hideo NUGA, Neng PU, Masaki OSAKABE, LHD Experiment Group. Study of first orbit losses of 1 MeV tritons using the Lorentz orbit code in the LHD[J]. Plasma Science and Technology, 2019, 21(2): 25102-025102. DOI: 10.1088/2058-6272/aaeba8
Citation: Kunihiro OGAWA, Mitsutaka ISOBE, Takeo NISHITANI, Sadayoshi MURAKAMI, Ryosuke SEKI, Hideo NUGA, Neng PU, Masaki OSAKABE, LHD Experiment Group. Study of first orbit losses of 1 MeV tritons using the Lorentz orbit code in the LHD[J]. Plasma Science and Technology, 2019, 21(2): 25102-025102. DOI: 10.1088/2058-6272/aaeba8

Study of first orbit losses of 1 MeV tritons using the Lorentz orbit code in the LHD

Funds: This work is supported partly by LHD project budgets (ULHH003 and ULHH034).
More Information
  • Received Date: September 04, 2018
  • Shot-integrated measurement of the triton burnup ratio has been performed in the Large Helical Device. It was reported that the triton burnup ratio, defined as total DT neutron yield divided by total DD neutron yield, increases significantly in inward shifted configurations. To understand the magnetic configuration dependence of the triton burnup ratio, the first orbit loss fraction of 1MeV tritons is evaluated by means of the Lorentz orbit code for various magnetic configurations. The first orbit loss of 1 MeV tritons is seen at t of less than 10−5 s and loss points of the triton are concentrated on the side of the helical coil case where the magnetic field is relatively weak. The significant decrease of the first orbit loss fraction by 15% is obtained with the inward shift of the magnetic axis position from 3.90 to 3.55 m. It is found that the decrease of first orbit loss is due to the reduction of the first orbit loss of transition and helically trapped tritons.
  • [1]
    Fasoli A et al 2007 Nucl. Fusion 47 S264
    [2]
    Heidbrink W W and Sadler G J 1994 Nucl. Fusion 34 535
    [3]
    Barnes C W et al 1998 Nucl. Fusion 38 597
    [4]
    Heidbrink W W et al 1983 Nucl. Fusion 23 917
    [5]
    Hoek M, Bosch S and Ullrich W 1999 Triton burnup measurements at ASDEX Upgrade by neutron foil activation IPP-Report IPP-1/320
    [6]
    Duong H H et al 1993 Nucl. Fusion 33 211
    [7]
    Nishitani T et al 1996 Plasma Phys. Control. Fusion 38 355
    [8]
    Jo J et al 2016 Rev. Sci. Instrum. 87 11D828
    [9]
    Gori S et al 2001 Plasma Phys. Control. Fusion 43 137
    [10]
    Okamura S et al 2000 J. Plasma Fusion Res. SERIES 3 73
    [11]
    Osakabe M et al 2017 Fusion Sci. Technol. 72 199
    [12]
    Isobe M et al 2018 Nucl. Fusion 58 082004
    [13]
    Wesson J 2004 Tokamaks 3rd edn (Oxford: Oxford University Press)
    [14]
    Fujii K et al 2015 Nucl. Fusion 55 063029
    [15]
    Ito R 1993 Analytic cross sections for collisions of H, H 2, He and Li atoms and ions with atoms and molecules JAERI-M 93-117 Japan: Japan Atomic Energy Research Institute
    [16]
    Isobe M, Funaki D and Sasao M 2009 J. Plasma Fusion Res. SERIES 8 330
    [17]
    Murakami S 2004 J. Plasma Fusion Res. 80 725
    [18]
    Homma M et al 2015 Plasma Fusion Res. 10 3403050
  • Related Articles

    [1]Xingyuan XU (徐行远), Yingfeng XU (徐颖峰), Xiaodong ZHANG (张晓东), Youjun HU (胡友俊), Lei YE (叶磊), Xiaotao XIAO (肖小涛). Simulations of first-orbit losses of neutral beam injection (NBI) fast ions on EAST[J]. Plasma Science and Technology, 2020, 22(8): 85101-085101. DOI: 10.1088/2058-6272/ab8973
    [2]Liying ZHU (朱立颖), Linchun FU (付林春), Ming QIAO (乔明), Bo CUI (崔波), Qi CHEN (陈琦), Junyi LIN (林君毅). The characteristics of primary and secondary arcs on a solar array in low earth orbit[J]. Plasma Science and Technology, 2017, 19(5): 55304-055304. DOI: 10.1088/2058-6272/aa607a
    [3]JIANG Peng (江澎), LIN Zhihong (林志宏), Ihor HOLOD, XIAO Chijie (肖池阶). The Implementation of Magnetic Islands in Gyrokinetic Toroidal Code[J]. Plasma Science and Technology, 2016, 18(2): 126-130. DOI: 10.1088/1009-0630/18/2/05
    [4]HE Yihua (贺艺华), YANG Chang (杨昶), HE Zhaoguo (何兆国), ZHANG Zelong (张择龙), et al.. Observation and Modeling of Geostationary Orbit Electron Energization Induced by Enhanced Dayside Whistler-Mode Waves[J]. Plasma Science and Technology, 2013, 15(9): 866-870. DOI: 10.1088/1009-0630/15/9/06
    [5]QU Hongpeng (曲洪鹏). Ion-Banana-Orbit-Width Effect on Bootstrap Current for Small Magnetic Islands[J]. Plasma Science and Technology, 2013, 15(9): 852-856. DOI: 10.1088/1009-0630/15/9/03
    [6]WU Guojiang (吴国将), ZHANG Xiaodong (张晓东). Calculations of the Ion Orbit Loss Region at the Edge of EAST[J]. Plasma Science and Technology, 2012, 14(9): 789-793. DOI: 10.1088/1009-0630/14/9/03
    [7]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [8]LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17
    [9]Hiroshi Naitou, Yusuke Yamada, Kenji Kajiwara, Wei-li Lee, Shinji Tokuda, Masatoshi Yagi. Global and Kinetic MHD Simulation by the Gpic-MHD Code[J]. Plasma Science and Technology, 2011, 13(5): 528-534.
    [10]GAO Zhe. Analytical Theory of the Geodesic Acoustic Mode in the Small and Large Orbit Drift Width Limits and its Application in a Study of Plasma Shaping Effect[J]. Plasma Science and Technology, 2011, 13(1): 15-20.
  • Cited by

    Periodical cited type(14)

    1. Sugiyama, T., Masuzaki, S., Shoji, M. et al. Asymmetry in particle load on divertor tiles in different magnetic field configurations of LHD. Nuclear Materials and Energy, 2024. DOI:10.1016/j.nme.2024.101830
    2. Ogawa, K., Magee, R.M., Tajima, T. et al. Demonstration of aneutronic p-11B reaction in a magnetic confinement device. Nuclear Fusion, 2024, 64(9): 096028. DOI:10.1088/1741-4326/ad6615
    3. Wangkhahat, P., Sangaroon, S., Wisitsorasak, A. et al. Study of Orbit Motion of Hydrogen and Deuterium Beam Ions Toward Neutral Beam Injection Experiment in Thailand Tokamak-1. ASEAN Journal of Scientific and Technological Reports, 2024, 27(1): 58-67. DOI:10.55164/ajstr.v27i1.251121
    4. Sangaroon, S., Ogawa, K., Isobe, M. et al. Feasibility study of neutral beam injection in Thailand Tokamak-1. Fusion Engineering and Design, 2023. DOI:10.1016/j.fusengdes.2023.113419
    5. Ogawa, K., Isobe, M., Weiss, C. et al. Fusion product diagnostics based on commercially available chemical vapor deposition diamond detector in large helical device. Journal of Instrumentation, 2023, 18(1): P01022. DOI:10.1088/1748-0221/18/01/P01022
    6. Ogawa, K., Isobe, M., Kamio, S. et al. Studies of energetic particle transport induced by multiple Alfvén eigenmodes using neutron and escaping energetic particle diagnostics in Large Helical Device deuterium plasmas. Nuclear Fusion, 2022, 62(11): 112001. DOI:10.1088/1741-4326/ac6f66
    7. Osakabe, M., Takahashi, H., Yamada, H. et al. Recent results from deuterium experiments on the large helical device and their contribution to fusion reactor development. Nuclear Fusion, 2022, 62(4): 042019. DOI:10.1088/1741-4326/ac3cda
    8. Ohtani, H., Masuzaki, S., Ogawa, K. et al. Virtual-reality visualization of loss points of 1 MeV tritons in the Large Helical Device, LHD. Journal of Visualization, 2022, 25(2): 281-292. DOI:10.1007/s12650-021-00805-8
    9. Ogawa, K., Isobe, M., Nuga, H. et al. Evaluation of Alpha Particle Emission Rate Due to the p-11B Fusion Reaction in the Large Helical Device. Fusion Science and Technology, 2022, 78(3): 175-185. DOI:10.1080/15361055.2021.1973294
    10. Ogawa, K., Isobe, M., Sangaroon, S. et al. Time-resolved secondary triton burnup 14 MeV neutron measurement by a new scintillating fiber detector in middle total neutron emission ranges in deuterium large helical device plasma experiments. AAPPS Bulletin, 2021, 31(1): 20. DOI:10.1007/s43673-021-00023-2
    11. Yajima, M., Masuzaki, S., Yoshida, N. et al. Investigation on tritium retention and surface properties on the first wall in the large helical Device. Nuclear Materials and Energy, 2021. DOI:10.1016/j.nme.2021.100906
    12. Masuzaki, S., Yajima, M., Ogawa, K. et al. Investigation of the distribution of remaining tritium in divertor in LHD. Nuclear Materials and Energy, 2021. DOI:10.1016/j.nme.2020.100884
    13. Ogawa, K., Isobe, M., Osakabe, M. Progress on Integrated Neutron Diagnostics for Deuterium Plasma Experiments and Energetic Particle Confinement Studies in the Large Helical Device During the Campaigns from FY2017 to FY2019. Plasma and Fusion Research, 2021. DOI:10.1585/pfr.16.1102023
    14. Masuzaki, S., Otsuka, T., Ogawa, K. et al. Investigation of remaining tritium in the LHD vacuum vessel after the first deuterium experimental campaign. Physica Scripta, 2020, 2020(T171): 014068. DOI:10.1088/1402-4896/ab6d44

    Other cited types(0)

Catalog

    Article views (151) PDF downloads (299) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return