Advanced Search+
QU Hongpeng (曲洪鹏). Ion-Banana-Orbit-Width Effect on Bootstrap Current for Small Magnetic Islands[J]. Plasma Science and Technology, 2013, 15(9): 852-856. DOI: 10.1088/1009-0630/15/9/03
Citation: QU Hongpeng (曲洪鹏). Ion-Banana-Orbit-Width Effect on Bootstrap Current for Small Magnetic Islands[J]. Plasma Science and Technology, 2013, 15(9): 852-856. DOI: 10.1088/1009-0630/15/9/03

Ion-Banana-Orbit-Width Effect on Bootstrap Current for Small Magnetic Islands

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (Nos.2011GB105002 and 2010GB106006) and National Natural Science Foundation of China (No.11175057)
More Information
  • Received Date: May 06, 2012
  • A simple and direct theoretical method has been proposed to investigate the so- called ion-banana-orbit-width (IBW) effect on the bootstrap current in the region of magnetic islands generated by the neoclassical tearing mode (NTM). The result shows that, when the IBW approaches the island width, the (ion) bootstrap current can be partly restored inside the island while the pressure profile is flattened. This can lead to the reduction of the bootstrap current drive on the NTM. The strength of the IBW effect on the NTM is related to the safety factor and the inverse aspect ratio on the rational surface.
  • Related Articles

    [1]A M EL SHERBINI, M M HAGRASS, M R M RIZK, E A EL-BADAWY. Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths[J]. Plasma Science and Technology, 2019, 21(1): 15502-015502. DOI: 10.1088/2058-6272/aadf7e
    [2]Hang LI (李航), Xiang GAO (高翔), Guoqiang LI (李国强), Zhengping LUO (罗正平), Damao YAO (姚达毛), Yong GUO (郭勇). Design of snowflake-diverted equilibria of CFETR[J]. Plasma Science and Technology, 2018, 20(3): 35102-035102. DOI: 10.1088/2058-6272/aa9e83
    [3]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [4]LIAN Youyun (练友运), LIU Xiang (刘翔), FENG Fan (封范), CHEN Lei (陈蕾), CHENG Zhengkui (程正奎), WANG Jin (王金), CHEN Jiming (谌继明). Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components[J]. Plasma Science and Technology, 2016, 18(2): 184-189. DOI: 10.1088/1009-0630/18/2/15
    [5]CHEN Lei (陈蕾), LIU Xiang (刘翔), LIAN Youyun (练友运), CAI Laizhong (才来中). Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept[J]. Plasma Science and Technology, 2015, 17(9): 792-796. DOI: 10.1088/1009-0630/17/9/12
    [6]MA Xuebin(马学斌), LIU Songlin(刘松林), LI Jia(李佳), PU Yong(蒲勇), CHEN Xiangcun(陈香存). Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept[J]. Plasma Science and Technology, 2014, 16(4): 390-395. DOI: 10.1088/1009-0630/16/4/16
    [7]YU Jianyang(俞建阳), LIU Huaping(刘华坪), XU Dimeng(徐迪孟), CHEN Fu(陈浮). Investigation of the DBD Plasma Effect on Flat Plate Flow[J]. Plasma Science and Technology, 2014, 16(3): 197-202. DOI: 10.1088/1009-0630/16/3/05
    [8]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [9]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [10]XU Tiejun, HUANG Shenghong, XIE Han, SONG Yuntao, ZHAN Ping, GAO Daming. Optimization of Heat-Sink Cooling Structure in EAST with Hydraulic Expansion Technique[J]. Plasma Science and Technology, 2011, 13(6): 765-768.
  • Cited by

    Periodical cited type(22)

    1. Chen, X., Zhang, H., Lu, M. et al. Structure optimization and performance analysis of hypervapotron heat exchange channel | [超汽化换热通道结构优化与性能分析]. Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2025, 49(1): 15-24. DOI:10.14177/j.cnki.32-1397n.2025.49.01.002
    2. Wang, X., Li, J., Wang, J.-C. et al. Research on the high heat flux removal technique of a lithium target for the AB-BNCT application. Nuclear Engineering and Technology, 2025. DOI:10.1016/j.net.2025.103498
    3. Yang, X.-K., Yin, L., Yao, D.-M. Design and analysis of the first wall on the NBI shine-through area of high magnetic field side of EAST | [EAST 装置高场侧 NBI 束透区第一壁的设计和分析]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(4): 451-456. DOI:10.16568/j.0254-6086.202404012
    4. Tan, Y., Wang, J., Feng, F. et al. Additive manufacturing of W/RAFM hypervapotron plasma-facing components and the steady state thermal fatigue behavior. Journal of Nuclear Materials, 2024. DOI:10.1016/j.jnucmat.2024.155333
    5. Xuan, C., Zhu, D., Gao, B. et al. Melting of W/Cu flat type component for main limiter and its impact on plasma operation in EAST experiments. Nuclear Fusion, 2024, 64(8): 086039. DOI:10.1088/1741-4326/ad573e
    6. Yao, G., Shen, X., Liu, J.-Q. et al. Study on damage behavior of the outer horizontal target in the EAST lower divertor after plasma operations. Nuclear Materials and Energy, 2024. DOI:10.1016/j.nme.2024.101640
    7. Zhang, X., Wang, Y., Zhong, C. et al. Progress, Load Study, and Structural Analysis of the CFETR Divertor Dome. IEEE Transactions on Plasma Science, 2024, 52(4): 1460-1473. DOI:10.1109/TPS.2024.3382568
    8. Yang, X., Yao, D., Yin, L. et al. Design of the CFC composite brazed HFS first wall on the NBI shine-through area of the EAST device. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114151
    9. Lu, M., Han, L., Zhou, J. et al. Thermohydraulic and thermal fatigue characteristics of W/Cu flat-type microchannel mock-up for CFETR divertor. Applied Thermal Engineering, 2024. DOI:10.1016/j.applthermaleng.2023.122079
    10. Xu, T., Cao, L., Peng, X. et al. Design and Research and Development of Front-Face Remote Handling Targets for CFETR Divertor. IEEE Transactions on Plasma Science, 2024, 52(9): 3542-3548. DOI:10.1109/TPS.2024.3399319
    11. Xu, D., Cheng, J., Chen, P. et al. Recent progress in research on bonding technologies of W/Cu monoblocks as the divertor for nuclear fusion reactors. Nuclear Materials and Energy, 2023. DOI:10.1016/j.nme.2023.101482
    12. Zhang, X., Yin, L., Mou, N. et al. Design and thermal-hydraulic analysis for CFETR divertor OVT in consideration of RH compatibility. Fusion Engineering and Design, 2023. DOI:10.1016/j.fusengdes.2023.113865
    13. Liu, C., Zhou, J., Cheng, K. et al. Flow thermohydraulic characterization of open diverging microchannel heat sink for high heat flux dissipation. Applied Thermal Engineering, 2023. DOI:10.1016/j.applthermaleng.2023.120396
    14. Huang, J., Gong, X., Garofalo, A.M. et al. Long-pulse high-performance H-mode plasmas achieved on EAST. Physics of Plasmas, 2023, 30(6): 062504. DOI:10.1063/5.0146690
    15. Zhu, D., Guo, Z., Xuan, C. et al. In situ melting phenomena on W plasma-facing components for lower divertor during long-pulse plasma operations in EAST. Nuclear Fusion, 2023, 63(3): 036022. DOI:10.1088/1741-4326/acb3e1
    16. Ebadi, H., Carrone, F., Difonzo, R. et al. A multi-scale hybrid approach to the modelling and design of a novel micro-channel cooling structure for the W7X divertor. Case Studies in Thermal Engineering, 2023. DOI:10.1016/j.csite.2023.102734
    17. Zhang, X., Xu, T., Yin, L. et al. Front-Face RH Compatible Structure Design and Thermal Analysis for CFETR Divertor Dome. Fusion Science and Technology, 2023, 80(1): 98-107. DOI:10.1080/15361055.2023.2198482
    18. Lu, M., Zhou, J., Chen, X. The Development and Application of Microchannel Heat Sink on W/Cu Flat-Type Mock-Up. IEEE Transactions on Plasma Science, 2022, 50(11): 4213-4219. DOI:10.1109/TPS.2022.3169809
    19. Liu, C., Zhou, J., Zhao, Q. et al. Numerical Investigation of Heat Transfer in Open Microchannel Heat Sinks With Transverse Ribs for High Heat Flux Dissipation. IEEE Transactions on Plasma Science, 2022, 50(11): 4220-4225. DOI:10.1109/TPS.2022.3167453
    20. Lu, M., Han, L., Zhao, Q. et al. Microchannel cooling technique for dissipating high heat flux on W/Cu flat-type mock-up for EAST divertor. Plasma Science and Technology, 2022, 24(9): 095602. DOI:10.1088/2058-6272/ac684c
    21. Zhang, X., Yin, L., Xu, T. et al. Conceptual Design of CFETR Divertor Dome for Remote Handling. IEEE Transactions on Plasma Science, 2022, 50(4): 996-1001. DOI:10.1109/TPS.2022.3156599
    22. Wan, B.N., Gong, X.Z., Liang, Y. et al. Advances in the long-pulse steady-state high beta H-mode scenario with active controls of divertor heat and particle fluxes in EAST. Nuclear Fusion, 2022, 62(4): 042010. DOI:10.1088/1741-4326/ac2993

    Other cited types(0)

Catalog

    Article views (232) PDF downloads (1107) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return