Advanced Search+
A M EL SHERBINI, M M HAGRASS, M R M RIZK, E A EL-BADAWY. Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths[J]. Plasma Science and Technology, 2019, 21(1): 15502-015502. DOI: 10.1088/2058-6272/aadf7e
Citation: A M EL SHERBINI, M M HAGRASS, M R M RIZK, E A EL-BADAWY. Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths[J]. Plasma Science and Technology, 2019, 21(1): 15502-015502. DOI: 10.1088/2058-6272/aadf7e

Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths

More Information
  • Received Date: June 13, 2018
  • Plasma ignition threshold of nanoparticle-based and bulk silver targets was measured in air. The plasma was initiated by a Nd:YAG laser at wavelengths of 355, 532, and 1064 nm. The plasma ignition was monitored utilizing the prominent Ag I line at 546.5 nm. Lower ignition thresholds of the nanoparticle-based silver target were estimated at 0.4±0.02, 0.34±0.04, and 0.27±0.035 J cm−2 coupled with the different laser wavelengths, respectively. In contrast, the bulk silver target plasma exhibited an order of magnitude higher ignition threshold. A three orders of magnitude enhanced emission intensity from the nano-based target over the bulk target was achieved at lower levels of laser irradiation. A reduction of the thermal diffusion length of the nanosilver was assumed in order to theoretically predict this reduction in the plasma threshold. In addition, the effect of self-reversal on the resonance lines was taken into consideration.
  • [1]
    Cremers D A and Radziemski L J 1987 Laser Plasmas for Chemical Analysis (New York: Marcel Dekker Inc.)
    [2]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347
    [3]
    Miziolek M, Palleschi V and Schechter I 2006 Laser-Induced Breakdown Spectroscopy (New York: Cambridge University Press)
    [4]
    Ismail M A et al 2004 J. Anal. At. Spectrom. 19 489
    [5]
    Roberts D E et al 2010 Spectrochim. Acta, Part B 65 918
    [6]
    Griem H R 1964 Plasma Spectroscopy (New York: McGraw-Hill)
    [7]
    Fujimoto T 2004 Plasma Spectroscopy (New York: Oxford University Press)
    [8]
    Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin: Springer)
    [9]
    Lochte-Holtgreven W 1968 Plasma Diagnostics (New York: Wiley)
    [10]
    Ohta T et al 2009 Appl. Spectrosc. 63 555
    [11]
    El Sherbini A M et al 2012 World J. Nano Sci. Eng. 2 181
    [12]
    Rashid F F, El Sherbini A M and Al-Muhamady A 2014 Appl. Phys. A 115 1395
    [13]
    El Sherbini A M et al 2014 J. Phys.: Conf. Ser. 548 012031
    [14]
    El Sherbini A M and Parigger C G 2016 Spectrochim. Acta, Part B 116 8
    [15]
    El Sherbini A M and Parigger C G 2016 Spectrochim. Acta, Part B 124 79
    [16]
    El Sherbini A M, Hagrass M M and Parigger C G 2016 IRAMP 7 31
    [17]
    Dell’Aglio M, Alrifai R and De Giacomo A 2018 Spectrochim. Acta, Part B 148 105
    [18]
    Amamou H et al 2003 J. Quant. Spectrosc. Radiat. Transf. 77 365
    [19]
    El Sherbini A M et al 2005 Spectrochim. Acta, Part B 60 1573
    [20]
    Moon H Y et al 2009 Spectrochim. Acta, Part B 64 702
    [21]
    NIST atomic spectral database (https://doi.org/10.18434/ T4W30F)
    [22]
    Cabalín L M and Laserna J J 1998 Spectrochim. Acta, Part B 53 723
    [23]
    Hussein A E et al 2013 J. Appl. Phys. 113 143305
    [24]
    Vogel A et al 1999 Appl. Phys. B 68 271
    [25]
    Linz N et al 2015 Phys. Rev. B 91 134114
    [26]
    Mulser P and Bauer D 2010 High Power Laser-Matter Interaction (Heidelberg: Springer)
    [27]
    Lotz W 1967 J. Opt. Soc. Am. 57 873
    [28]
    Jackson J D 1999 Classical Electrodynamics (New York: Wiley)
    [29]
    Pokropivny V et al 2007 Introduction in Nanomaterials and Nanotechnology (Tartu: University of Tartu)
    [30]
    Warrier P and Teja A 2011 Nanoscale Res. Lett. 6 247
    [31]
    Warrier P et al 2010 AIChE J. 56 3243
    [32]
    Cahill D G et al 2014 Appl. Phys. Rev. 1 011305
    [33]
    Mehrali M et al 2014 Nanoscale Res. Lett. 9 15
    [34]
    Lee S H et al 2014 Appl. Phys. Lett. 104 193113
  • Related Articles

    [1]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [2]Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Farideh HONARY, Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Threshold of parametric instability in the ionospheric heating experiments[J]. Plasma Science and Technology, 2018, 20(11): 115301. DOI: 10.1088/2058-6272/aac71d
    [3]Zhengwei YAO (姚征伟), Lihong CHENG (成丽红), Rongan TANG (唐荣安), Jukui XUE (薛具奎). Wakefield generation by chirped super- Gaussian laser pulse in inhomogeneous plasma[J]. Plasma Science and Technology, 2018, 20(11): 115002. DOI: 10.1088/2058-6272/aacbbf
    [4]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Guangye XU (徐广野), Xiaoning ZHANG (张晓宁), Shu LIN (林澍), Binhao JIANG (江滨浩). Experimental and numerical studies on the receiving gain enhancement modulated by a sub-wavelength plasma layer[J]. Plasma Science and Technology, 2018, 20(9): 95504-095504. DOI: 10.1088/2058-6272/aac430
    [5]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [6]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Shu LIN (林澍), Zhibin WANG (王志斌), Bowen LI (李博文), Shulei ZHENG (郑树磊), Binhao JIANG (江滨浩). Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation[J]. Plasma Science and Technology, 2018, 20(1): 14017-014017. DOI: 10.1088/2058-6272/aa8f3e
    [7]Nader MORSHEDIAN. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)[J]. Plasma Science and Technology, 2017, 19(9): 95501-095501. DOI: 10.1088/2058-6272/aa74c5
    [8]WANG Ying (王莹), CHEN Anmin (陈安民), LI Suyu (李苏宇), SUI Laizhi (隋来志), LIU Dunli (刘敦利), LI Shuchang (李舒畅), LI He (李贺), JIANG Yuanfei (姜远飞), JIN Mingxing (金明星). Re-Heating Effect on the Enhancement of Plasma Emission Generated from Fe Under Femtosecond Double-Pulse Laser Irradiation[J]. Plasma Science and Technology, 2016, 18(12): 1192-1197. DOI: 10.1088/1009-0630/18/12/09
    [9]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03
    [10]M. HANIF, M. SALIK, M. A. BAIG. Spectroscopic Studies of the Laser Produced Lead Plasma[J]. Plasma Science and Technology, 2011, 13(2): 129-134.
  • Cited by

    Periodical cited type(6)

    1. Fikry, M., Alhijry, I.A., Aboulfotouh, A.M. et al. Feasibility of Using Boltzmann Plots to Evaluate the Stark Broadening Parameters of Cu(I) Lines. Applied Spectroscopy, 2021, 75(10): 1288-1295. DOI:10.1177/00037028211013371
    2. Tang, Z., Liu, K., Hao, Z. et al. The validity of nanoparticle enhanced molecular laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2021, 36(5): 1034-1040. DOI:10.1039/d0ja00528b
    3. Matsumoto, A., Shimazu, Y., Yoshizumi, S. et al. Laser-induced breakdown spectroscopy using a porous silicon substrate produced by metal-assisted etching: Microanalysis of a strontium chloride aqueous solution as an example. Journal of Analytical Atomic Spectrometry, 2020, 35(10): 2239-2247. DOI:10.1039/d0ja00144a
    4. El Sherbini, A.M., El Farash, A.H., El Sherbini, T.M. et al. Opacity corrections for resonance silver lines in nano-material laser-induced plasma. Atoms, 2019, 7(3): 73. DOI:10.3390/ATOMS7030073
    5. Parigger, C.G., Sherbini, A.M.E.L., Splinter, R. Selected laser-induced plasma spectroscopy: From medical to astrophysical applications. Journal of Physics: Conference Series, 2019, 1253(1): 012001. DOI:10.1088/1742-6596/1253/1/012001
    6. Wang, Q., Ma, L. Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency. Plasma Science and Technology, 2019, 21(10): 105001. DOI:10.1088/2058-6272/ab307a

    Other cited types(0)

Catalog

    Article views (158) PDF downloads (183) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return