Advanced Search+
Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295
Citation: Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295

Investigation of ion fishbone stability on HL-2A using NIMROD

Funds: This work was supported by the National Magnetic Confinement Fusion Program (Nos. 2014GB110000, 2014GB124002 and 2015GB101004), National Natural Science Foundation of China (Nos. 11475058, 11875253 and 11775221), the Fundamental Research Funds for the Central Universities (No. WK3420000004). Author P Zhu also acknowledges the supports from US Department of Energy (Nos. DE-FG02- 86ER53218 and DE-FC02-08ER54975). This work used resources of Supercomputing Center of University of Science and Technology of China.
More Information
  • Received Date: November 09, 2018
  • Revised Date: March 20, 2019
  • Accepted Date: March 21, 2019
  • Numerical calculations of resistive internal kink mode with effects of energetic particles (EPs) on HL-2A have been performed using the hybrid kinetic-MHD model inplemented in the NIMROD code. The m/n=1/1 resistive internal kink mode is unstable in MHD limit. However, with kinetic effects of energetic ions, a fishbone mode is excited with mode frequency around 10 kHz. We calculate the impact of resistivity on the growth rate and frequency of ion fishbone mode, and the results are in good agreement with the analytic solutions, which are obtained by solving the fishbone dispertion relation including resistivity effect. The effects of βfrac and cut off velocity of EP on fishbone mode are calculated in detail, where βfrac is the ratio of EP pressure to background plasma pressure. This work presents a clear explanation of the stabilizing effect of ECRH on ion fishbone, which is first observed on HL-2A.
  • [1]
    Gorelenkov N N, Pinches S D and Toi K 2014 Nucl. Fusion 54 125001
    [2]
    ITER Physics Basis Editor et al 1999 Nucl. Fusion 39 2137
    [3]
    Fasoli A et al 2007 Nucl. Fusion 47 s264
    [4]
    Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008
    [5]
    Furth H P et al 1990 Nucl. Fusion 30 1799
    [6]
    McGuire K et al 1983 Phys. Rev. Lett. 50 891
    [7]
    Heidbrink W W and Sadler G J 1994 Nucl. Fusion 34 535
    [8]
    Heidbrink W W and Sager G 1990 Nucl. Fusion 30 1015
    [9]
    Nave M F F et al 1991 Nucl. Fusion 31 697
    [10]
    Kaita R et al 1990 Phys. Fluids B 2 1584
    [11]
    Matsunaga G et al 2010 Nucl. Fusion 50 084003
    [12]
    Chen W et al 2010 Nucl. Fusion 50 084008
    [13]
    Chen L, White R B and Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122
    [14]
    Biglari H and Chen L 1986 Phys. Fluids 29 1760
    [15]
    Wu T T et al 2018 Phys. Plasmas 25 052504
    [16]
    Coppi B and Porcelli F 1986 Phys. Rev. Lett. 57 2272
    [17]
    Heidbrink W W et al 1986 Phys. Rev. Lett. 57 835
    [18]
    Betti R and Freidberg J P 1993 Phys. Rev. Lett. 70 3428
    [19]
    Wang S J 2001 Phys. Rev. Lett. 86 5286
    [20]
    Zonca F and Chen L 2014 Phys. Plasmas 21 072120
    [21]
    Zonca F and Chen L 2014 Phys. Plasmas 21 072121
    [22]
    Chen W et al 2018 Nucl. Fusion 58 014001
    [23]
    Luo B et al 2018 Nucl. Fusion 58 016049
    [24]
    Banerjee D, Zhu P and Maingi R 2017 Nucl. Fusion 57 076005
    [25]
    Hou Y W et al 2018 Phys. Plasmas 25 012501
    [26]
    Zhu P et al 2017 Phys. Plasmas 24 024503
    [27]
    Cheng S K, Zhu P and Banerjee D 2017 Phys. Plasmas 24 092510
    [28]
    Sovinec C R et al 2004 J. Comput. Phys. 195 355
    [29]
    Cheng C Z 1991 J. Geophys. Res. 96 21159
    [30]
    Fu G Y et al 2006 Phys. Plasmas 13 052517
    [31]
    Kim C C and The NIMROD Team 2008 Phys. Plasmas 15 072507
    [32]
    Shen W et al 2015 Phys. Plasmas 22 042510
    [33]
    Heidbrink W W et al 2011 Plasma Phys. Control. Fusion 53 085028
    [34]
    White R B et al 1988 Phys. Rev. Lett. 60 2038
    [35]
    Hastie R J et al 1987 Phys. Fluids 30 1756
    [36]
    Porcelli F 1991 Plasma Phys. Control. Fusion 33 1601
    [37]
    Van Dam J W, Rosenbluth M N and Lee Y C 1982 Phys. Fluids 25 1349 9
  • Related Articles

    [1]J A JUAREZ-MORENO, U CHACON-ARGAEZ, J BARRON-ZAMBRANO, C CARRERA-FIGUEIRAS, P QUINTANA-OWEN, W TALAVERA-PECH, Y PEREZ-PADILLA, A AVILA-ORTEGA. Effect of inductively coupled plasma surface treatment on silica gel and mesoporous MCM-41 particles[J]. Plasma Science and Technology, 2018, 20(6): 65506-065506. DOI: 10.1088/2058-6272/aaabb5
    [2]Ahmed RIDA GALALY, Guido VAN OOST. Environmental and economic vision of plasma treatment of waste in Makkah[J]. Plasma Science and Technology, 2017, 19(10): 105503. DOI: 10.1088/2058-6272/aa77ef
    [3]Zhiyu YAN (严志宇), Xin WANG (王鑫), Bing SUN (孙冰), Mi WEN (文密), Yue HAN (韩月). Catalytic technology for water treatment by micro arc oxidation on Ti–Al alloy[J]. Plasma Science and Technology, 2017, 19(3): 35501-035501. DOI: 10.1088/2058-6272/19/3/035501
    [4]LI Hongtao (李洪涛), KAN Jinfeng (阚金峰), JIANG Bailing (蒋百灵), LIU Yanjie (刘燕婕), LIU Zheng (刘政). Study of the Deburring Process for Low Carbon Steel by Plasma Electrolytic Oxidation[J]. Plasma Science and Technology, 2016, 18(8): 860-864. DOI: 10.1088/1009-0630/18/8/12
    [5]GU Ling(古玲). Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid[J]. Plasma Science and Technology, 2014, 16(3): 223-225. DOI: 10.1088/1009-0630/16/3/09
    [6]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [7]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [8]S. SHAHIDI, M. GHORANNEVISS. Sterilization of Cotton Fabrics Using Plasma Treatment[J]. Plasma Science and Technology, 2013, 15(10): 1031-1033. DOI: 10.1088/1009-0630/15/10/13
    [9]V. PRYSIAZHNYI. Plasma Treatment of Aluminum Using a Surface Barrier Discharge Operated in Air and Nitrogen: Parameter Optimization and Related Effects[J]. Plasma Science and Technology, 2013, 15(8): 794-799. DOI: 10.1088/1009-0630/15/8/15
    [10]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
  • Cited by

    Periodical cited type(8)

    1. Xiao, W., Li, Y., Zhang, Y. et al. Recent Development of Fibrous Materials for Electrocatalytic Water Splitting. Applied Energy, 2025. DOI:10.1016/j.apenergy.2025.125809
    2. Wang, S., Wang, Y., Gao, M. et al. Aging Effect of Plasma-Treated Carbon Fiber Surface: From an Engineering Point. Coatings, 2024, 14(1): 80. DOI:10.3390/coatings14010080
    3. Li, J., Yuan, L., Wu, Z. et al. Synergetic surface modification of 3D braided carbon fiber-reinforced composites for enhancing mechanical strength. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.158189
    4. Sowmya, S., Vijaikanth, V. g-C3N4/Chlorocobaloxime Nanocomposites as Multifunctional Electrocatalysts for Water Splitting and Energy Storage. ACS Omega, 2023, 8(36): 32940-32954. DOI:10.1021/acsomega.3c04347
    5. Rashed, A.O., Huynh, C., Merenda, A. et al. Carbon nanofibre microfiltration membranes tailored by oxygen plasma for electrocatalytic wastewater treatment in cross-flow reactors. Journal of Membrane Science, 2023. DOI:10.1016/j.memsci.2023.121475
    6. Jiang, J., Jin, B., Meng, L. Research progress of non-noble metal catalysts based on electrocatalytic oxygen evolution reaction | [基于电催化析氧反应的非贵金属催化剂研究进展]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40(3): 1365-1380. DOI:10.13801/j.cnki.fhclxb.20220819.001
    7. Xu, J., Zhang, Y.-Q., Zhu, X.-B. et al. Boosting catalytic activities of carbon felt electrode towards redox reactions of vanadium ions by defect engineering | [利用缺陷工程提高碳毡电极对钒离子的氧化还原催化活性]. Journal of Central South University, 2022, 29(9): 2956-2967. DOI:10.1007/s11771-022-5129-z
    8. Mei, T., Gao, M., Wang, Y. et al. Effects of acid treatment and plasma micromachining on the surface properties of carbon fibers. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.153261

    Other cited types(0)

Catalog

    Article views (291) PDF downloads (218) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return