Advanced Search+
J A JUAREZ-MORENO, U CHACON-ARGAEZ, J BARRON-ZAMBRANO, C CARRERA-FIGUEIRAS, P QUINTANA-OWEN, W TALAVERA-PECH, Y PEREZ-PADILLA, A AVILA-ORTEGA. Effect of inductively coupled plasma surface treatment on silica gel and mesoporous MCM-41 particles[J]. Plasma Science and Technology, 2018, 20(6): 65506-065506. DOI: 10.1088/2058-6272/aaabb5
Citation: J A JUAREZ-MORENO, U CHACON-ARGAEZ, J BARRON-ZAMBRANO, C CARRERA-FIGUEIRAS, P QUINTANA-OWEN, W TALAVERA-PECH, Y PEREZ-PADILLA, A AVILA-ORTEGA. Effect of inductively coupled plasma surface treatment on silica gel and mesoporous MCM-41 particles[J]. Plasma Science and Technology, 2018, 20(6): 65506-065506. DOI: 10.1088/2058-6272/aaabb5

Effect of inductively coupled plasma surface treatment on silica gel and mesoporous MCM-41 particles

Funds: This work was supported by CONACYT Ciencia Básica project 176544. SEM and XPS measurements were per-formed at LANNBIO Cinvestav Mérida, under support from projects FOMIX-Yucatán 2008-108160, CONACYT LAB-2009-01 No. 123913.
More Information
  • Received Date: November 27, 2017
  • Silica gel and MCM-41 synthesized mesoporous materials were treated with either oxygen (O2), hexamethyldisiloxane (HMDSO) and organic vapors like ethanol (EtOH), and acrylonitrile (AN) inductive plasma. The radiofrequency power for the modification was fixed to 120 W and 30 min, assuring a high degree of organic ionization energy in the plasma. The surface properties were studied by infrared spectroscopy (FTIR), scanning electron microscopy, x-ray photoelectron spectroscopy and dynamic light scattering technique was used for characterizing size distributions. When the silica and MCM-41 particles were modified by AN and HMDSO plasma gases, the surface morphology of the particles was changed, presenting another color, size or shape. In contrast, the treatments of oxygen and EtOH did not affect the surface morphology of both particles, but increased the oxygen content at the surface bigger than the AN and HMDSO plasma treatments. In this study, we investigated the influence of different plasma treatments on changes in morphology and the chemical composition of the modified particles which render them a possible new adsorbent for utilization in sorptive extraction techniques for polar compounds.
  • [1]
    Hwang K S et al 2009 Sep. Sci. Technol. 45 85
    [2]
    Kango S et al 2013 Prog. Polym. Sci. 38 1232
    [3]
    Zhao Y L and Perrier S 2006 Macromolecules 39 8603
    [4]
    Pérez-Quintanilla D et al 2006 Micropor. Mesopor. Mater. 89 58
    [5]
    Schreiber H P et al 1990 Polym. Eng. Sci. 30 263
    [6]
    Liu C J, Xu G H and Wang T M 1999 Fuel Process. Technol. 58 119
    [7]
    Lieberman M A and Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: Wiley)
    [8]
    Chen H M et al 2013 Theranostics 3 650
    [9]
    Talavera-Pech W A et al 2016 J. Sol-Gel Sci. Technol. 80 697
    [10]
    Sabbatini L et al 1999 J. Electron Spectrosc. Relat. Phenom. 100 35
    [11]
    Juárez-Moreno J A et al 2015 Appl. Surf. Sci. 349 763
    [12]
    Yanguas-Gil A et al 2004 Appl. Phys. Lett. 85 4004
    [13]
    Hollenstein C 2000 Plasma Phys. Control. Fusion 42 R93
    [14]
    Pérez L D et al 2006 Macromol. Symp. 245–246 628
    [15]
    Péré E et al 2001 Vib. Spectrosc. 25 163
    [16]
    Davis K M and Tomozawa M 1995 J. Non-Cryst. Solids 185 203
    [17]
    Galeener F L and Geissberger A E 1983 Phys. Rev. B 27 6199
    [18]
    Sarmadi A M, Ying T H and Denes F 1995 Eur. Polym. J. 31 847
    [19]
    Bhat N V and Upadhyay D J 2003 Plasmas Polym. 8 99
    [20]
    Broyer M et al 2002 Langmuir 18 5083
    [21]
    Lin B Z and Zhou S X 2015 Appl. Surf. Sci. 359 380
    [22]
    Kale K H, Palaskar S S and Kasliwal P M 2012 Indian J. Fibre Text. Res. 37 238
    [23]
    Lefohn A E, Mackie N M and Fisher E R 1998 Plasmas Polym. 3 197
    [24]
    Vempati R K et al 1990 Soil Sci. Soc. Am. J. 54 695
    [25]
    Tsai H C and Doong R A 2007 Biosens. Bioelectron. 23 66
    [26]
    Meng H et al 2015 ACS Nano 9 3540
    [27]
    Liu P, Liu W M and Xue Q J 2004 Mater. Chem. Phys. 87 109
    [28]
    Kostov K G et al 2004 Surf. Coat. Technol. 186 287
    [29]
    Che A F et al 2005 Polymer 46 11060
    [30]
    Meng L et al 2015 Sci. Rep. 5 7910
    [31]
    Bournel F et al 2002 Surf. Sci. 513 37
  • Related Articles

    [1]Jie LONG, Weiran SONG, Zongyu HOU, Zhe WANG. A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2023, 25(7): 075501. DOI: 10.1088/2058-6272/acb6dd
    [2]Guodong WANG (王国栋), Lanxiang SUN (孙兰香), Wei WANG (汪为), Tong CHEN (陈彤), Meiting GUO (郭美亭), Peng ZHANG (张鹏). A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy[J]. Plasma Science and Technology, 2020, 22(7): 74002-074002. DOI: 10.1088/2058-6272/ab76b4
    [3]Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
    [4]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [5]Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4
    [6]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [7]Ying LI (李颖), Yanhong GU (谷艳红), Ying ZHANG (张莹), Yuandong LI (李远东), Yuan LU (卢渊). Analytical study of seashell using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2017, 19(2): 25501-025501. DOI: 10.1088/2058-6272/19/2/025501
    [8]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [9]WEN Guanhong(温冠宏), SUN Duixiong(孙对兄), SU Maogen(苏茂根), DONG Chenzhong(董晨钟). LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix[J]. Plasma Science and Technology, 2014, 16(6): 598-601. DOI: 10.1088/1009-0630/16/6/11
    [10]ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11

Catalog

    Article views (233) PDF downloads (489) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return