Advanced Search+
Jie LONG, Weiran SONG, Zongyu HOU, Zhe WANG. A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2023, 25(7): 075501. DOI: 10.1088/2058-6272/acb6dd
Citation: Jie LONG, Weiran SONG, Zongyu HOU, Zhe WANG. A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2023, 25(7): 075501. DOI: 10.1088/2058-6272/acb6dd

A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy

More Information
  • Corresponding author:

    Zhe WANG, E-mail: Zongyuhou@tsinghua.edu.cn

    Zongyu HOU, E-mail: zhewang@tsinghua.edu.cn

  • Received Date: October 24, 2022
  • Revised Date: January 24, 2023
  • Accepted Date: January 27, 2023
  • Available Online: December 05, 2023
  • Published Date: April 12, 2023
  • Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy (LIBS). Based on the understanding that the superposition of both matrix effects and signal uncertainty directly affects plasma parameters and further influences spectral intensity and LIBS quantification performance, a data selection method based on plasma temperature matching (DSPTM) was proposed to reduce both matrix effects and signal uncertainty. By selecting spectra with smaller plasma temperature differences for all samples, the proposed method was able to build up the quantification model to rely more on spectra with smaller matrix effects and signal uncertainty, therefore improving final quantification performance. When applied to quantitative analysis of the zinc content in brass alloys, it was found that both accuracy and precision were improved using either a univariate model or multiple linear regression (MLR). More specifically, for the univariate model, the root-mean-square error of prediction (RMSEP), the determination coefficients (R2) and relative standard derivation (RSD) were improved from 3.30%, 0.864 and 18.8% to 1.06%, 0.986 and 13.5%, respectively; while for MLR, RMSEP, R2 and RSD were improved from 3.22%, 0.871 and 26.2% to 1.07%, 0.986 and 17.4%, respectively. These results prove that DSPTM can be used as an effective method to reduce matrix effects and improve repeatability by selecting reliable data.

  • The authors are grateful for the financial support from the Scientific Research Program for Young Talents of China National Nuclear Corporation (2020), National Natural Science Foundation of China (Nos. 51906124 and 62205172), Shanxi Province Science and Technology Department (No. 20201101013) and Guoneng Bengbu Power Generation Co., Ltd (No. 20212000001).

  • [1]
    Winefordner J D et al 2004 J. Anal. At. Spectrom. 19 1061 doi: 10.1039/b400355c
    [2]
    Li X W et al 2015 Plasma Sci. Technol. 17 928 doi: 10.1088/1009-0630/17/11/07
    [3]
    Li X W et al 2020 Plasma Sci. Technol. 22 074014 doi: 10.1088/2058-6272/ab8972
    [4]
    Song W R et al 2021 Fuel 306 121667 doi: 10.1016/j.fuel.2021.121667
    [5]
    Senesi G S et al 2019 Trends Anal. Chem. 118 453 doi: 10.1016/j.trac.2019.05.052
    [6]
    Tian Y et al 2021 Spectrochim. Acta B 175 106027 doi: 10.1016/j.sab.2020.106027
    [7]
    Rehse S J, Salimnia H and Miziolek A W 2012 J. Med. Eng. Technol. 36 77 doi: 10.3109/03091902.2011.645946
    [8]
    Han S K, Park S H and Ahn S K 2020 Plasma Sci. Technol. 22 074015 doi: 10.1088/2058-6272/ab85bc
    [9]
    Sarkar A, Mukherjee S and Singh M 2022 Spectrochim. Acta B 187 106329 doi: 10.1016/j.sab.2021.106329
    [10]
    Balaram V 2019 Geosci. Front. 10 1285 doi: 10.1016/j.gsf.2018.12.005
    [11]
    Castro J P, Babos D V and Pereira-Filho E R 2020 Talanta 208 120443 doi: 10.1016/j.talanta.2019.120443
    [12]
    Wang Z et al 2021 Trends Anal. Chem. 143 116385 doi: 10.1016/j.trac.2021.116385
    [13]
    Chen M Y et al 2015 Spectrochim. Acta B 112 23 doi: 10.1016/j.sab.2015.08.003
    [14]
    Castle B C et al 1998 Appl. Spectrosc. 52 649 doi: 10.1366/0003702981944300
    [15]
    Song W R et al 2022 Expert Syst. Appl. 205 117756 doi: 10.1016/j.eswa.2022.117756
    [16]
    Yao S C et al 2021 Spectrochim. Acta B 175 106014 doi: 10.1016/j.sab.2020.106014
    [17]
    Wang X et al 2015 Plasma Sci. Technol. 17 914 doi: 10.1088/1009-0630/17/11/04
    [18]
    Wang Z et al 2012 Opt. Express 20A1011 doi: 10.1364/OE.20.0A1011
    [19]
    Shao J F et al 2017 Plasma Sci. Technol. 19 025506 doi: 10.1088/2058-6272/19/2/025506
    [20]
    Yu J L et al 2020 Spectrochim. Acta B 174 105992 doi: 10.1016/j.sab.2020.105992
    [21]
    Hou Z Y et al 2020 J. Anal. At. Spectrom. 35 1671 doi: 10.1039/D0JA00195C
    [22]
    Grad L and Možina J 1993 Appl. Surf. Sci. 69 370 doi: 10.1016/0169-4332(93)90536-K
    [23]
    Morton K L, Nohe J D and Madsen B S 1973 Appl. Spectrosc. 27 109 doi: 10.1366/000370273774333777
    [24]
    Zorov N B et al 2010 Spectrochim. Acta B 65 642 doi: 10.1016/j.sab.2010.04.009
    [25]
    Yao S C et al 2017 J. Anal. At. Spectrom. 32 766 doi: 10.1039/C6JA00458J
    [26]
    Yuan T B et al 2012 Appl. Opt. 51 B22 doi: 10.1364/AO.51.000B22
    [27]
    Aguirre M A et al 2013 Spectrochim. Acta B 79–80 88 doi: 10.1016/j.sab.2012.11.011
    [28]
    Xiu J S et al 2013 Appl. Phys. Lett. 102 244101 doi: 10.1063/1.4811245
    [29]
    Gu W L et al 2022 Anal. Chim. Acta 1205 339752 doi: 10.1016/j.aca.2022.339752
    [30]
    Li L Z et al 2011 J. Anal. At. Spectrom. 26 2274 doi: 10.1039/c1ja10194c
    [31]
    Wang Z et al 2012 Spectrochim. Acta B 68 58 doi: 10.1016/j.sab.2012.01.005
    [32]
    Hou Z Y et al 2013 J. Anal. At. Spectrom. 28 107 doi: 10.1039/C2JA30104K
    [33]
    Panne U et al 1998 Spectrochim. Acta B 53 1957 doi: 10.1016/S0584-8547(98)00238-9
    [34]
    Fu Y T et al 2021 Front. Phys. 16 22502 doi: 10.1007/s11467-020-1006-0
    [35]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347 doi: 10.1366/11-06574
    [36]
    Song Y Z et al 2021 Anal. Chim. Acta 1184 339053 doi: 10.1016/j.aca.2021.339053
    [37]
    Gu W L et al 2022 Plasma Sci. Technol. 24 080101 doi: 10.1088/2058-6272/ac7e26
    [38]
    Hou Z Y et al 2020 Plasma Sci. Technol. 22 070101 doi: 10.1088/2058-6272/ab95f7
  • Related Articles

    [1]Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35
    [2]Aohua MAO (毛傲华), Yang REN (任洋), Hantao JI (吉瀚涛), Peng E (鄂鹏), Ke HAN (韩轲), Zhibin WANG (王志斌), Qingmei XIAO (肖青梅), Liyi LI (李立毅). Conceptual design of the three-dimensional magnetic field configuration relevant to the magnetopause reconnection in the SPERF[J]. Plasma Science and Technology, 2017, 19(3): 34002-034002. DOI: 10.1088/2058-6272/19/3/034002
    [3]WU Ding (吴鼎), LIU Ping (刘平), SUN Liying (孙立影), HAI Ran (海然), DING Hongbin (丁洪斌). Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air[J]. Plasma Science and Technology, 2016, 18(4): 364-369. DOI: 10.1088/1009-0630/18/4/06
    [4]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), CHEN Zhenmao (陈振茂). A Moving Coordinate Numerical Method for Analyses of Electromagneto-Mechanical Coupled Behavior of Structures in a Strong Magnetic Field Aiming at Application to Tokamak Structure[J]. Plasma Science and Technology, 2014, 16(12): 1163-1170. DOI: 10.1088/1009-0630/16/12/14
    [5]ZHAO Qing(赵青), XING Xiaojun(邢晓俊), XUAN Yinliang(宣银良), LIU Shuzhang(刘述章). The Influence of Magnetic Field on Antenna Performance in Plasma[J]. Plasma Science and Technology, 2014, 16(6): 614-619. DOI: 10.1088/1009-0630/16/6/14
    [6]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [7]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
    [8]LI Hui (李辉), XIE Mingfeng(谢铭丰). Measurement of Plasma Parameters of Gliding Arc Driven by the Transverse Magnetic Field[J]. Plasma Science and Technology, 2012, 14(8): 712-715. DOI: 10.1088/1009-0630/14/8/06
    [9]GUO Yong (郭勇), XIAO Bingjia (肖炳甲), LUO Zhengping (罗正平). Toroidal Multipolar Expansion for Fast L-Mode Plasma Boundary Reconstruction in EAST[J]. Plasma Science and Technology, 2011, 13(3): 332-341.
    [10]YUAN Zhongcai(袁忠才), SHI Jiaming (时家明), HUANG Yong (黄勇), XU Bo (许波). Faraday angle of Linearly Polarized Waves along Magnetic Field in Magnetized Collisional Plasmas[J]. Plasma Science and Technology, 2010, 12(5): 519-522.

Catalog

    Figures(7)  /  Tables(7)

    Article views (52) PDF downloads (65) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return