Advanced Search+
Feng XU (徐峰), Fang DING (丁芳), Xiahua CHEN (陈夏华), Liang WANG (王亮), Jichan XU (许吉禅), Zhenhua HU (胡振华), Hongmin MAO (毛红敏), Guangnan LUO (罗广南), Zhongshi YANG (杨钟时), Jingbo CHEN (陈竞博), Kedong LI (李克栋). Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor[J]. Plasma Science and Technology, 2018, 20(10): 105102. DOI: 10.1088/2058-6272/aad226
Citation: Feng XU (徐峰), Fang DING (丁芳), Xiahua CHEN (陈夏华), Liang WANG (王亮), Jichan XU (许吉禅), Zhenhua HU (胡振华), Hongmin MAO (毛红敏), Guangnan LUO (罗广南), Zhongshi YANG (杨钟时), Jingbo CHEN (陈竞博), Kedong LI (李克栋). Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor[J]. Plasma Science and Technology, 2018, 20(10): 105102. DOI: 10.1088/2058-6272/aad226

Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor

Funds: This work was supported by National Key Research and Development Program of China (No. 2017YFA0402500) and National Natural Science Foundation of China (Nos. 11575243, 11605238, and 11575242).
More Information
  • Received Date: February 19, 2018
  • The electron density within the volume of the tungsten divertor of the Experimental Advanced Superconducting Tokamak (EAST) is calculated based on Dε line (396.9 nm) Stark broadening (SB) measurements. The quasistatic approximation is employed in the SB calculation of the Dε line. The influences of other broadening mechanisms on the calculation error of electron density have been evaluated. The SB method is applied to the study of spatial distribution and time evolution of the electron density in the W divertor. Two electron density bands are observed in the detached divertor plasma during an L-mode discharge sustained by low hybrid wave (LHW) heating, which could be related to the striated particle flux distribution induced by LHW. After the onset of detachment, the upper electron density band corresponding to outer strike point firstly increases then decreases, while the lower density band corresponding to striated particle flux increases continually although the electron densities from Langmuir Probes at the divertor plate keep a descending trend. This could indicate a downward movement of the radiation region that approximately moves along the magnetic field lines after the onset of detachment.
  • [1]
    Kallenbach A et al 2015 Nucl. Fusion 55 053026
    [2]
    Lipschultz B, Parra F I and Hutchinson I H 2016 Nucl. Fusion 56 056007
    [3]
    Feng W et al 2017 Nucl. Fusion 57 126054
    [4]
    Potzel S et al 2014 Nucl. Fusion 54 013001
    [5]
    Stangeby P C 1993 Nucl. Fusion 33 1695
    [6]
    Leonard A W 2018 Plasma Phys. Control. Fusion 60 044001
    [7]
    Potzel S et al 2014 Plasma Phys. Control. Fusion 56 025010
    [8]
    Mijatovi? Z et al 2010 J. Quant. Spectrosc. Radiat. Transfer 111 990
    [9]
    Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin: Springer)
    [10]
    Wan B N et al 2015 Nucl. Fusion 55 104015
    [11]
    Wu C R et al 2016 Rev. Sci. Instrum. 87 11D616
    [12]
    Mao H M et al 2017 Rev. Sci. Instrum. 88 043502
    [13]
    Landau L D and Lifshitz E M 1965 Quantum Mechanics: Non- Relativistic Theory ed J B Sykes and J S Bell Trans 2nd edn (Oxford: Pergamon)
    [14]
    Nikiforov A Y et al 2015 Plasma Sources Sci. Technol. 24 034001
    [15]
    Gigosos M A 2014 J. Phys. D Appl. Phys. 47 343001
    [16]
    Griem H R 1974 Spectral Line Broadening by Plasmas (New York: Academic)
    [17]
    Potzel S 2012 Experimental classification of divertor detachment PhD Von der Universit?t Bayreuth, Germany
    [18]
    Stehlé C and Hutcheon R 1999 Astron. Astrophys. Suppl. Ser. 140 93
    [19]
    Rosato J, Marandet Y and Stamm R 2017 J. Quant. Spectrosc. Radiat. Transfer 187 333
    [20]
    McWhirter R W P and Summers H P 1984 Atomic radiation from low density plasma Plasmas: Applied Atomic Collision Physics ed C F Barnett and M F A Harrison vol 2 (Amsterdam: Elsevier) p 52
    [21]
    Bates D R, Kingston A E and McWhirter R W P 1962 Proc. R. Soc. A 267 297
    [22]
    Summers H P et al 2006 Plasma Phys. Control. Fusion 48 263
    [23]
    The ADAS Project http://adas.ac.uk/
    [24]
    Isler R C 1994 Plasma Phys. Control. Fusion 36 171
  • Related Articles

    [1]Min WANG, Qingmei XIAO, Xiaogang WANG, Daoyuan LIU. Numerical studies of the influence of seeding locations on D-SOL plasmas in EAST[J]. Plasma Science and Technology, 2022, 24(1): 015101. DOI: 10.1088/2058-6272/ac320f
    [2]H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
    [3]J R LEGORRETA, J L PATINO, F B YOUSIF. Laser induced photo-detachment of O2 in DC discharge[J]. Plasma Science and Technology, 2018, 20(7): 75401-075401. DOI: 10.1088/2058-6272/aab48d
    [4]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [5]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [6]Guozhong DENG (邓国忠), Liang WANG (王亮), Xiaoju LIU (刘晓菊), Yanmin DUAN (段艳敏), Jiansheng HU (胡建生), Changzheng LI (李长征), Ling ZHANG (张凌), Shaocheng LIU (刘少承), Huiqian WANG (汪惠乾), Liang CHEN (陈良), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Guosheng XU (徐国盛), Houyang GUO (郭后扬), Xiang GAO (高翔), the EAST team. Achieving temporary divertor plasma detachment with MARFE events by pellet injection in the EAST superconducting tokamak[J]. Plasma Science and Technology, 2017, 19(1): 15101-015101. DOI: 10.1088/1009-0630/19/1/015101
    [7]NIU Zhiwen (牛志文), WEN Xiaoqiong (温小琼), REN Chunsheng (任春生), QIU Yuliang (邱玉良). Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water[J]. Plasma Science and Technology, 2016, 18(8): 821-825. DOI: 10.1088/1009-0630/18/8/05
    [8]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [9]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [10]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09

Catalog

    Article views (172) PDF downloads (318) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return