Advanced Search+
Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
Citation: Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403

Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation

More Information
  • Received Date: June 01, 2016
  • We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns–Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser energy and the effect of different laser wavelengths were compared. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadened as well as using the Saha–Boltzmann equation (SBE). Each approach was also carried out by using the Al emission line and Mg emission lines. It was observed that the SBE method generated a little higher electron number density value than the Stark broadening method, but within the experimental uncertainty range. Comparisons of Ne determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength. These results show the applicability of the SBE method for Ne determination, especially when the system does not have any pure emission lines whose electron impact factor is known. Also use of Mg lines gives superior results than Al lines.
  • [1]
    Griem H R 1964 Plasma Spectroscopy (New York: McGraw-Hill)
    [2]
    Griem H R 1974 Spectral Line Broadening by Plasmas (New York: Academic)
    [3]
    Lochte-Holtgreven W 1968 Plasma Diagnostics (New York: Wiley)
    [4]
    Beke? G 1976 Principles of Laser Plasma (New York: Wiley)
    [5]
    Cremers D A and Radziemski L J 1987 Laser Spectroscopy and its Applications (New York: Dekker)
    [6]
    Adrain R S and Watson J 1984 J. Phys. D: Appl. Phys. 17 1915
    [7]
    Shaikh N M, Hafeez S and Baig M A 2007 Spectrochim. Acta B 62 1311
    [8]
    Satta M et al 2003 Appl. Spectrosc. 57 737
    [9]
    Sabsabi M and Cielo P 1995 Appl. Spectrosc. 49 499
    [10]
    Milán M and Laserna J J 2001 Spectrochim. Acta B 56 275
    [11]
    Keszler A M and Nemes L 2004 J. Mol. Struct. 695–696 211
    [12]
    Hermann J et al 1993 J. Appl. Phys. 74 3071
    [13]
    Harilal S S et al 1998 Appl. Spectrosc. 52 449
    [14]
    Cremers D A, Radziemski L J and Loree T R 1984 Appl. Spectrosc. 38 721
    [15]
    Bengoechea J, Aragón C and Aguilera J A 2005 Spectrochim. Acta B 60 897
    [16]
    Iida Y 1990 Spectrochim. Acta B 45 1353
    [17]
    Zhao X Z et al 1992 Appl. Phys. B 55 327
    [18]
    Corsi M et al 2005 Appl. Spectrosc. 59 853
    [19]
    De Giacomo A et al 2007 Spectrochim. Acta B 62 721
    [20]
    Grant K J and Paul G L 1990 Appl. Spectrosc. 44 1349
    [21]
    Sarkar A et al 2011 J. At. Mol. Opt. Phys. 2011 7
    [22]
    Andreic Z 1993 Spectroscopic investigations of aluminum plasma produced by a nitrogen laser PhD University of Zagreb, Zagreb, Croatia (http://rgn.hr/~zandreic/phdhtm/ phdindex.html)
    [23]
    Konjevi? N et al 2002 J. Phys. Chem. Ref. Data 31 819
    [24]
    OrtizMandMayoR2005 J. Phys. B: At. Mol. Opt. Phys. 38 3953
    [25]
    Singh M et al 2015 J. Anal. At. Spectrom. 30 2507
    [26]
    Chromiński K and Tkacz M 2010 J. Med. Inform. Technol. 16 6
    [27]
    Kurucz R L ‘Kurucz Atomic Database’ Kurucz Atomic Database: (http://cfa.harvard.edu/amdata/ampdata/ kurucz23/sekur.html)
    [28]
    NIST ‘NIST atomic spectral database’ NIST atomic spectral database: (http://physics.nist.gov/cgi-bin/ASD/lines_ form.html)
    [29]
    Burger M and Hermann J 2016 Spectrochim. Acta B 122 118
    [30]
    Adamson M et al 2007 Spectrochim. Acta B 62 1348
    [31]
    Pardini L et al 2013 Spectrochim. Acta B 88 98
    [32]
    Lasheras R J et al 2011 J. Hazardous Mater. 192 704
    [33]
    Le Drogoff B et al 2001 Spectrochim. Acta B 56 987
    [34]
    Colón C et al 1993 J. Appl. Phys. 73 4752
    [35]
    Ferrero F S et al 1997 J. Phys. B: At. Mol. Opt. Phys. 30 893
    [36]
    Galmed A H and Harith M A 2008 Appl. Phys. B 91 651
    [37]
    Weyl G M and Rosen D 1985 Phys. Rev. A 31 2300
    [38]
    Bogaerts A and Chen Z 2005 Spectrochim. Acta B 60 1280
  • Related Articles

    [1]hi-Shung YIP (叶孜崇), Di JIANG (江堤). Laser induced fluorescence diagnostic for velocity distribution functions: applications, physics, methods and developments[J]. Plasma Science and Technology, 2021, 23(5): 55501-055501. DOI: 10.1088/2058-6272/abec62
    [2]Hirotake SUGAWARA. Configuration of propagator method for calculation of electron velocity distribution function in gas under crossed electric and magnetic fields[J]. Plasma Science and Technology, 2019, 21(9): 94001-094001. DOI: 10.1088/2058-6272/ab20e0
    [3]Mehrdad SHAHMOHAMMADI BENI, Wei HAN (韩伟), K N YU (余君岳). Modeling OH transport phenomena in cold plasma discharges using the level set method[J]. Plasma Science and Technology, 2019, 21(5): 55403-055403. DOI: 10.1088/2058-6272/ab008d
    [4]Zhe YU (俞哲), Jialin ZHAO (赵嘉琳), Rui LIU (刘蕊), Huijuan CAO (曹慧娟), Pu LIU (刘璞), Zhitao ZHANG (张芝涛). Research on resonance parameters matching based on partitioned operation method of atmospheric pressure plasma reactor array[J]. Plasma Science and Technology, 2019, 21(5): 54004-054004. DOI: 10.1088/2058-6272/aaffa2
    [5]Feng XU (徐峰), Fang DING (丁芳), Xiahua CHEN (陈夏华), Liang WANG (王亮), Jichan XU (许吉禅), Zhenhua HU (胡振华), Hongmin MAO (毛红敏), Guangnan LUO (罗广南), Zhongshi YANG (杨钟时), Jingbo CHEN (陈竞博), Kedong LI (李克栋). Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor[J]. Plasma Science and Technology, 2018, 20(10): 105102. DOI: 10.1088/2058-6272/aad226
    [6]Jia FU (符佳), Bo LYU (吕波), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Dongmei LIU (刘冬梅), Yongqing WEI (魏永清), Chao FAN (范超), Yuejiang SHI (石跃江), Zhenwei WU (吴振伟), Baonian WAN (万宝年). Development of signal analysis method for the motional Stark effect diagnostic on EAST[J]. Plasma Science and Technology, 2017, 19(10): 104001. DOI: 10.1088/2058-6272/aa7941
    [7]Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e
    [8]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [9]ZHENG Pingwei(郑平卫), GONG Xueyu(龚学余), YU Jun(余俊), DU Dan(杜丹). Fully Implicit Iterative Solving Method for the Fokker-Planck Equation in Tokamak Plasmas[J]. Plasma Science and Technology, 2014, 16(11): 1000-1006. DOI: 10.1088/1009-0630/16/11/02
    [10]LI Hui (李辉), XIE Mingfeng (谢铭丰). Plasma Parameters of a Gliding Arc Jet at Atmospheric Pressure Obtained by a Line-Ratio Method[J]. Plasma Science and Technology, 2013, 15(8): 776-779. DOI: 10.1088/1009-0630/15/8/11

Catalog

    Article views (359) PDF downloads (1223) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return