Advanced Search+
Hirotake SUGAWARA. Configuration of propagator method for calculation of electron velocity distribution function in gas under crossed electric and magnetic fields[J]. Plasma Science and Technology, 2019, 21(9): 94001-094001. DOI: 10.1088/2058-6272/ab20e0
Citation: Hirotake SUGAWARA. Configuration of propagator method for calculation of electron velocity distribution function in gas under crossed electric and magnetic fields[J]. Plasma Science and Technology, 2019, 21(9): 94001-094001. DOI: 10.1088/2058-6272/ab20e0

Configuration of propagator method for calculation of electron velocity distribution function in gas under crossed electric and magnetic fields

More Information
  • Received Date: January 29, 2019
  • Revised Date: May 05, 2019
  • Accepted Date: May 09, 2019
  • This paper presents a self-contained description on the configuration of propagator method (PM) to calculate the electron velocity distribution function (EVDF) of electron swarms in gases under DC electric and magnetic fields crossed at a right angle. Velocity space is divided into cells with respect to three polar coordinates v, θ and f. The number of electrons in each cell is stored in three-dimensional arrays. The changes of electron velocity due to acceleration by the electric and magnetic fields and scattering by gas molecules are treated as intercellular electron transfers on the basis of the Boltzmann equation and are represented using operators called the propagators or Green’s functions. The collision propagator, assuming isotropic scattering, is basically unchanged from conventional PMs performed under electric fields without magnetic fields. On the other hand, the acceleration propagator is customized for rotational acceleration under the action of the Lorentz force. The acceleration propagator specific to the present cell configuration is analytically derived. The mean electron energy and average electron velocity vector in a model gas and SF6 were derived from the EVDF as a demonstration of the PM under the Hall deflection and they were in a fine agreement with those obtained by Monte Carlo simulations. A strategy for fast relaxation is discussed, and extension of the PM for the EVDF under AC electric and DC/AC magnetic fields is outlined as well.
  • [1]
    Holstein T 1946 Phys. Rev. 70 367
    [2]
    Kumar K, Skullerud H R and Robson R E 1980 Aust. J. Phys.33 343
    [3]
    Yachi S, Kitamura Y, Kitamori K and Tagashira H 1988 J. Phys. D: Appl. Phys. 21 914
    [4]
    Yachi S, Date H, Kitamori K and Tagashira H 1991 J. Phys. D:Appl. Phys. 24 573
    [5]
    Boyle G J, Tattersall W J, Cocks D G, Dujko S and White S D 2015 Phys. Rev. A 91 052710
    [6]
    Boyle G J, McEachran R P, Cocks D G and White R D 2015 J. Chem. Phys. 142 154507
    [7]
    Boyle G J et al 2016 J. Phys. D: Appl. Phys. 49 355201
    [8]
    Drallos P J and Wadehra J M 1988 J. Appl. Phys. 63 5601
    [9]
    Drallos P J and Wadehra J M 1989 Phys. Rev. A 40 1967
    [10]
    Sommerer T J, Hitchon W N G, Harvey R E P and Lawler J E 1991 Phys. Rev. A 43 4452
    [11]
    Maeda K and Makabe T 1994 Japan. J. Appl. Phys. 33 4173
    [12]
    Shimada T, Nakamura Y, Petrović Z L J and Makabe T 2003 J. Phys. D: Appl. Phys. 36 1936
    [13]
    Sugawara H and Sakai Y 2003 J. Phys. D: Appl. Phys. 36 1994
    [14]
    Sommerer T J, Hitchon W N G and Lawler J E 1989 Phys. Rev.A 39 6356
    [15]
    Sugawara H, Sakai Y and Tagashira H 1992 J. Phys. D: Appl.Phys. 25 1483
    [16]
    Sugawara H, Sakai Y and Tagashira H 1994 J. Phys. D: Appl.Phys. 27 90
    [17]
    Sugawara H, Sakai Y and Tagashira H 1995 J. Phys. D: Appl.Phys. 28 61
    [18]
    Sugawara H, Tagashira H and Sakai Y 1997 J. Phys. D: Appl.Phys. 30 368
    [19]
    Sugawara H, Sakaidag Y, Tagashiraddag H and Kitamori K 1998 J. Phys. D: Appl. Phys. 31 319
    [20]
    Sugawara H and Sakai Y 1999 J. Phys. D: Appl. Phys. 32 1671
    [21]
    Sugawara H and Sakai Y 2006 Japan. J. Appl. Phys. 45 5189
    [22]
    Hitchon W N G, Koch D J and Adams J B 1989 J. Comput.Phys. 83 79
    [23]
    Tan W, Hoekstra R J and Kushner M J 1996 J. Appl. Phys.79 3423
    [24]
    Christlieb A J, Hitchon W N G, Lawler J E and Lister J E 2009 J. Phys. D: Appl. Phys. 42 194007
    [25]
    Wichaidit C, Hitchon W N G, Lawler J E and Lister G G 2009 J. Phys. D: Appl. Phys. 42 025202
    [26]
    Golubovskii Y B, Porokhova I A, Lange H, Gortchakov S and Uhrlandt D 2005 Plasma Sources Sci. Technol. 14 45
    [27]
    Golubovskii Y, Gorchakov S and Uhrlandt D 2013 Plasma Sources Sci. Technol. 22 023001
    [28]
    Fixel D A and Hitchon W N G 2007 J. Comput. Phys. 227 1387
    [29]
    Sugawara H 2017 Plasma Sources Sci. Technol. 26 044002
    [30]
    Sugawara H 2019 IEEE Trans. Plasma Sci. 47 1071
    [31]
    Sugawara H 2017 Proc. 10th Asia-Pacific Int. Symp. on the Basics and Applications of Plasma Technology (Taoyuan, Taiwan)
    [32]
    Sugawara H and Matsumoto S 2017 National Convention Record, Institute of Electrical Engineers of Japan (Toyama,Japan) (in Japanese)
    [33]
    Sugawara H 2017 Proc. 33rd Int. Conf. Phenomena in Ionized Gases (Estoril, Portugal)
    [34]
    Sugawara H 2018 Proc. 19th Asian Conf. on Electrical Discharge (Xianyang, Shaanxi, China)
    [35]
    Uchida T 1998 J. Vac Sci. Technol. A 16 1529
    [36]
    Uchida T and Hamaguchi S 2008 J. Phys. D: Appl. Phys. 41 083001
    [37]
    O’Connell D, Gans T, Crintea D L, Czarnetzki U and Sadeghi N 2008 Plasma Sources Sci. Technol. 17 024022
    [38]
    Sugawara H, Osaga T, Tsuboi H, Kuwahara K and Ogata S 2010 Japan. J. Appl. Phys. 49 086001
    [39]
    Osaga T, Sugawara H and Sakurai Y 2011 Plasma Sources Sci.Technol. 20 065003
    [40]
    Tsankov T and Czarnetzki U 2011 AIP Conf. Proc. 1390 140
    [41]
    Celik Y, Tsankov T and Czarnetzki U 2011 IEEE Trans.Plasma Sci. 39 2466
    [42]
    Tsankov T and Czarnetzki U 2011 IEEE Trans. Plasma Sci.39 2538
    [43]
    Tsankov T V, Toko K and Czarnetzki U 2012 Phys. Plasmas 19 123503
    [44]
    Sugawara H and Ogino S 2016 Japan. J. Appl. Phys. 55 07LD05
    [45]
    Sugawara H, Yahata T, Oda A and Sakai Y 2000 J. Phys. D:Appl. Phys. 33 1191
    [46]
    Reid I D 1979 Aust. J. Phys. 32 231
    [47]
    Itoh H, Miura Y, Ikuta N, Nakao Y and Tagashira H 1988 J. Phys. D: Appl. Phys. 21 922–30
    [48]
    Itoh H, Matsumura T, Satoh K, Date H, Nakao Y and Tagashira H 1993 J. Phys. D: Appl. Phys. 26 1975
    [49]
    Ness K F 1994 J. Phys. D: Appl. Phys. 27 1848
    [50]
    White R D, Brennan M J and Ness K F 1997 J. Phys. D: Appl.Phys. 30 810
    [51]
    Sugawara H 2018 Japan. J. Appl. Phys. 57 038001
    [52]
    Kitamori K, Tagashira H and Sakai Y 1980 J. Phys. D: Appl.Phys. 13 535
    [53]
    Raspopović Z, Sakadzic A, Petrovic Z L J and Makabe T 2000 J. Phys. D: Appl. Phys. 33 1298
    [54]
    White R D, Ness K F and Robson R E 2002 Appl. Surf. Sci.192 26
    [55]
    Dujko S, White R D, Petrović Z L Z and Robson R E 2011 Plasma Sources Sci. Technol. 20 024013
    [56]
    White R D, Ness K F, Robson R E and Li B 1999 Phys. Rev. E 60 2231
    [57]
    Dujko S, White R D, Ness K F, Petrović Z L J and Robson R E 2006 J. Phys. D: Appl. Phys. 39 4788
    [58]
    Dujko S, White R D, Petrović Z L J and Robson R E 2010 Phys. Rev. E 81 046403

Catalog

    Article views (228) PDF downloads (428) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return