Advanced Search+
Mehrdad SHAHMOHAMMADI BENI, Wei HAN (韩伟), K N YU (余君岳). Modeling OH transport phenomena in cold plasma discharges using the level set method[J]. Plasma Science and Technology, 2019, 21(5): 55403-055403. DOI: 10.1088/2058-6272/ab008d
Citation: Mehrdad SHAHMOHAMMADI BENI, Wei HAN (韩伟), K N YU (余君岳). Modeling OH transport phenomena in cold plasma discharges using the level set method[J]. Plasma Science and Technology, 2019, 21(5): 55403-055403. DOI: 10.1088/2058-6272/ab008d

Modeling OH transport phenomena in cold plasma discharges using the level set method

More Information
  • Received Date: September 29, 2018
  • Cold atmospheric plasmas (CAPs) have attracted considerable interest in the field of plasma medicine. Generated reactive species such as hydroxyl (OH) species play an important role in applications of CAPs. Transportation of OH species towards the target and distribution of these OH species in the plasma plume play an important role in the applications of plasma medicine. In the present work, a computational model was built to simulate the transportation and distribution of OH species in CAP discharges, which was based on the level set method to dynamically track the propagation of plasma carrier gas in air. A reaction term was incorporated for the OH species. The OH species tended to diffuse around the main stream of the carrier gas, and thus covered larger radial and axial distances. A CAP discharge onto a skin layer led to the largest accumulation of OH species at the central part of the exposed area. The distribution of OH species on the skin was asymmetric, which agreed with experiments. The computational model itself and the obtained results would be useful for future development of plasma medicine.
  • [1]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [2]
    Park G Y et al 2012 Plasma Sources Sci. Technol. 21 043001
    [3]
    Laroussi M 2015 IEEE Trans. Plasma Sci. 43 703
    [4]
    Lu X et al 2016 Phys. Rep. 630 1
    [5]
    Lu X et al 2014 Phys. Rep. 540 123
    [6]
    Graves D B 2014 Phys. Plasmas 21 080901
    [7]
    Murakami T et al 2013 Plasma Sources Sci. Technol. 22 015003
    [8]
    Ji L F et al 2013 Appl. Phys. Lett. 102 184105
    [9]
    Nam S H et al 2013 J. Appl. Oral Sci. 21 265
    [10]
    Foest R et al 2007 Contrib. Plasma Phys. 47 119
    [11]
    Reuter R et al 2012 Plasma Process. Polym. 9 1116
    [12]
    Murakami T et al 2014 Plasma Sources Sci. Technol. 23 025005
    [13]
    Naidis G V 2014 Plasma Sources Sci. Technol. 23 065014
    [14]
    Winter J, Brandenburg R and Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001
    [15]
    Flynn P B et al 2016 Sci. Rep. 6 26320
    [16]
    Naidis G V 2013 Plasma Sources Sci. Technol. 22 035015
    [17]
    Ikawa S, Kitano K and Hamaguchi S 2010 Plasma Process. Polym. 7 33
    [18]
    Laroussi M 2005 Plasma Process. Polym. 2 391
    [19]
    Lee H W et al 2009 J. Endod. 35 587
    [20]
    Laroussi M 2014 Plasma Process. Polym. 11 1138
    [21]
    Kaushik N K et al 2013 Curr. Appl. Phys. 13 176
    [22]
    Lu X, Laroussi M and Puech V 2012 Plasma Sources Sci. Technol. 21 034005
    [23]
    Yue Y F, Pei X K and Lu X P 2017 IEEE Trans. Radiat. Plasma Med. Sci. 1 541
    [24]
    Keidar M et al 2013 Phys. Plasmas 20 057101
    [25]
    Kim G J et al 2010 Appl. Phys. Lett. 96 021502
    [26]
    Ishaq M, Evans M D M and Ostrikov K 2014 Biochim. Biophys. Acta Mol. Cell Res. 1843 2827
    [27]
    Kaushik N K, Uhm H and Choi E H 2012 Appl. Phys. Lett. 100 084102
    [28]
    Ostrikov K, Neyts E C and Meyyappan M 2013 Adv. Phys. 62 113
    [29]
    Keidar M and Beilis I I 2009 J. Appl. Phys. 106 103304
    [30]
    Lu Q Q et al 2014 Plasma Process. Polym. 11 1028
    [31]
    Xu D H et al 2015 PLoS One 10 e0128205
    [32]
    Cheng X Q et al 2014 J. Phys. D Appl. Phys. 47 335402
    [33]
    Cheng X Q et al 2014 PLoS One 9 e98652
    [34]
    Yan D Y et al 2015 Sci. Rep. 5 18339
    [35]
    Isbary G et al 2010 Br. J. Dermatol. 163 78
    [36]
    Arndt S et al 2013 PLoS One 8 e79325
    [37]
    Noriega E et al 2011 Food Microbiol. 28 1293
    [38]
    Perni S, Kong M G and Prokopovich P 2012 Acta Biomater. 8 1357
    [39]
    Preedy E C et al 2014 Colloids Surf. A Physicochem. Eng. Aspects 460 83
    [40]
    Li Y et al 2017 Sci. Rep. 7 45781
    [41]
    Ishaq M, Evans M and Ostrikov K 2014 Int. J. Cancer 134 1517
    [42]
    Lu X P and Ostrikov K 2018 Appl. Phys. Rev. 5 031102
    [43]
    Schr?der M, Ochoa A and Breitkopf C 2015 Biointerphases 10 029508
    [44]
    Pei X K et al 2014 IEEE Trans. Plasma Sci. 42 1206
    [45]
    Shahmohammadi Beni M and Yu K N 2017 Math. Comput. Appl. 22 24
    [46]
    Shahmohammadi Beni M and Yu K N 2015 Biointerphases 10 041003
    [47]
    Shahmohammadi Beni M and Yu K N 2017 Appl. Sci. 7 578
    [48]
    Olsson E and Kreiss G 2005 J. Comput. Phys. 210 225
    [49]
    Olsson E, Kreiss G and Zahedi S 2007 J. Comput. Phys. 225 785
    [50]
    Shahmohammadi Beni M, Zhao J Y and Yu K N 2018 Ann. Nucl. Energy 113 162
    [51]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [52]
    Liu Y, Ivanov A V and Molina M J 2009 Geophys. Res. Lett. 36 L03816
    [53]
    Thoroddsen S T, Etoh T G and Takehara K 2007 Phys. Fluids 19 042101
    [54]
    Yonemori S and Ono R 2014 J. Phys. D Appl. Phys. 47 125401
    [55]
    Luan P S et al 2017 J. Vac. Sci. Technol. A 35 05C315
  • Related Articles

    [1]Marian NEGREA. Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field[J]. Plasma Science and Technology, 2020, 22(1): 15101-015101. DOI: 10.1088/2058-6272/ab491e
    [2]Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f
    [3]Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef
    [4]Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602
    [5]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [6]WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16
    [7]YU Xingang (余新刚), GOU Fujun (苟富均). Molecular Dynamics Study on the Diffusion Properties of Hydrogen Atoms in Bulk Tungsten[J]. Plasma Science and Technology, 2013, 15(7): 710-715. DOI: 10.1088/1009-0630/15/7/19
    [8]ZHU Lingyu (祝令瑜), JI Shengchang (汲胜昌), HUI Sisi (惠思思), GUO Jun (郭俊), LI Yansong (李岩松), FU Chenzhao (傅晨钊). Application of Excitation Function to the Prediction of RI Level Caused by Corona Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1091-1098. DOI: 10.1088/1009-0630/14/12/10
    [9]CHEN Wenguang (陈文光), RAO Jun (饶军), LI Bo (李波), LEI Guangjiu (雷光玖), CAO Jianyong (曹建勇), WANG Mingwei (王明伟), KANG Zihua (康自华), FENG Kun (冯鲲), HL-A NBI Group. Technical Design of Arc-Discharge and Deceleration Power Supply for MW Level NBI System on HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(10): 936-940. DOI: 10.1088/1009-0630/14/10/15
    [10]HU Chundong(胡纯栋), XIE Yahong(谢亚红), NBI team. The Development of a Megawatt-Level High Current Ion Source[J]. Plasma Science and Technology, 2012, 14(1): 75-77. DOI: 10.1088/1009-0630/14/1/16
  • Cited by

    Periodical cited type(4)

    1. Manoharan, D., Radhakrishnan, M. Computational cold plasma dynamics and its potential application in food processing. Reviews in Chemical Engineering, 2022, 38(8): 1089-1105. DOI:10.1515/revce-2021-0005
    2. Hadizadeh, M.R.. An Overview of the Application of Pulsed Neutron Activation in Flow Measurements. Nuclear Technology, 2020, 206(7): 1086-1094. DOI:10.1080/00295450.2019.1693214
    3. Chakrabarti, K., Laporta, V., Tennyson, J. Calculated cross sections for low energy electron collision with OH. Plasma Sources Science and Technology, 2019, 28(8): 085013. DOI:10.1088/1361-6595/ab364c
    4. Beni, M.S., Han, W., Yu, K.N. Dispersion of OH radicals in applications related to fear-free dentistry using cold plasma. Applied Sciences (Switzerland), 2019, 9(10): 2119. DOI:10.3390/app9102119

    Other cited types(0)

Catalog

    Article views (156) PDF downloads (133) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return