Advanced Search+
Marian NEGREA. Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field[J]. Plasma Science and Technology, 2020, 22(1): 15101-015101. DOI: 10.1088/2058-6272/ab491e
Citation: Marian NEGREA. Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field[J]. Plasma Science and Technology, 2020, 22(1): 15101-015101. DOI: 10.1088/2058-6272/ab491e

Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field

Funds: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the EURATOM research and training program 2014–2018 under Grant Agreement No. 633053.
More Information
  • Received Date: July 17, 2019
  • Revised Date: September 29, 2019
  • Accepted Date: September 29, 2019
  • We calculate the diffusion coefficients for ions moving in a prescribed electromagnetic field. The field is considered to be a superposition of an electrostatic stochastic field and a space-dependent and sheared magnetic field. We have considered as parameters involved in the calculation of the diffusion coefficients the shear ion Kubo number Ksion, the electrostatic Kubo number K, the parallel shear ion Kubo number Kzsion, and the parallel thermal ion Kubo number Kz ion. A geometrical parameter which is the measure of the product of the stochastic perpendicular correlation length and the gradient in the magnetic field strength (see definitions in the text) is found not to be important in our calculation. The results concerning the diffusion coefficients obtained in our model are in agreement with experimental data and with those corresponding to other models, and the neoclassical and anomalous values for the diffusion coefficients are obtained.
  • [1]
    Balescu R 1988 Transport Processes in Plasmas, vol I Classical Transport (Amsterdam: North-Holland)
    [2]
    Balescu R 1988 Transport Processes in Plasmas, vol II, Neoclassical Transport (Amsterdam: North-Holland)
    [3]
    Hinton F L and Hazeltine R D 1976 Rev. Mod. Phys. 48 239
    [4]
    Isichenko M B 1991 Plasma Phys. Contr. Fusion 33 795
    [5]
    Isichenko M B 1992 Rev. Mod. Phys. 64 961
    [6]
    Ottaviani M 1992 Europhys. Lett. 20 111
    [7]
    Misguich J H et al 1998 Physicalia Mag. 20 103
    [8]
    Petrisor I 2016 Rom. J. Phys. 61 217
    [9]
    Vlad M et al 1998 Phys. Rev. E 58 7359
    [10]
    Vlad M et al 2002 Nucl. Fusion 42 157
    [11]
    Negrea M, Petrisor I and Balescu R 2004 Phys. Rev. E 70 046409
    [12]
    Balescu R, Petrisor I and Negrea M 2005 Plasma Phys.Control. Fusion 47 2145
    [13]
    Negrea M and Petrisor I 2006 Physics AUC 16 28
    [14]
    Negrea M, Petrisor I and Weyssow B 2007 Plasma Phys.Control. Fusion 49 1767
    [15]
    Petrisor I, Negrea M and Weyssow B 2007 Phys. Scr. 75 1
    [16]
    Negrea M, Petrisor I and Constantinescu D 2010 Rom. J. Phys.55 1013
    [17]
    Petrisor I and Negrea M 2012 Physics AUC 22 68
    [18]
    Negrea M, Petrisor I and Constantinescu D 2014 Physics AUC 24 116
    [19]
    Negrea M, Petrisor I and Weyssow B 2008 J. Optoelectron.Adv. Mater. 10 1942
    [20]
    Negrea M, Petrisor I and Weyssow B 2008 Phys. Scr. 77 055502
    [21]
    Negrea M, Petrisor I and Weyssow B 2008 J. Optoelectron.Adv. Mater. 10 1946
    [22]
    Shalchi A, Negrea M and Petrisor I 2016 Phys. Plasmas 23 072306
    [23]
    Negrea M, Petrisor I and Shalchi A 2017 Phys. Plasmas 24 112303
    [24]
    Pometescu N, Negrea M and Rotaru P 1998 Plasma Phys.Control. Fusion 40 1383
    [25]
    Steinbrecher G et al 1997 Plasma Phys. Control. Fusion 39 2039
    [26]
    Petrisor I et al 2012 Proceedings of the 2012 International Conference on High Performance Computing and Simulation, HPCS 6266983 623–7
    [27]
    Horton W 1985 Plasma Phys. Contr. Fusion 27 937
    [28]
    Weyssow B, Misguich J H and Balescu R 1991 Plasma Phys.Control. Fusion 33 763
    [29]
    Balescu R 2005 Aspects on Anomalous Transport in Plasmas (Bristol: Institute of Physics Publishing)
    [30]
    Negrea M et al 2011 Plasma Phys. Control. Fusion 53 085022
    [31]
    Scott B D 2002 New J. Phys. 4 52.1
    [32]
    Wesson J 1997 Tokamaks 2nd edn (New Year: Oxford University Press)
    [33]
    Giroud C et al (the JET EFDA Contributors) 2007 Nucl.Fusion 47 313
    [34]
    Cimpoiasu R 2017 J. Nonlinear Math. Phys. 24 531
    [35]
    Cimpoiasu R 2014 Phys. Plasmas 21 042118
    [36]
    Negrea M 2019 Plasma Phys. Control. Fusion 61 065004
  • Related Articles

    [1]Long CHEN, Zuojun CUI, Weifu GAO, Ping DUAN, Zichen KAN, Congqi TAN, Junyu CHEN. Effect of ion stress on properties of magnetized plasma sheath[J]. Plasma Science and Technology, 2024, 26(2): 025001. DOI: 10.1088/2058-6272/ad0d4f
    [2]Jinkui FENG (冯金奎), Decheng WANG (王德成), Changyong SHAO (邵长勇), Lili ZHANG (张丽丽), Xin TANG (唐欣). Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress[J]. Plasma Science and Technology, 2018, 20(3): 35505-035505. DOI: 10.1088/2058-6272/aa9b27
    [3]Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Linlin TANG (汤淋淋), Zhongwei WANG (王忠伟), Xiang JI (戢翔), Shuangsong DU (杜双松). Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports[J]. Plasma Science and Technology, 2017, 19(5): 55601-055601. DOI: 10.1088/2058-6272/aa57f4
    [4]WANG Xianwei(汪献伟), XIE Fei(谢飞), JIN Huan(金环). Calculation and Optimization of ITER Upper VS Feeder Under an Electromagnetic Load[J]. Plasma Science and Technology, 2014, 16(11): 1063-1067. DOI: 10.1088/1009-0630/16/11/12
    [5]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Rapid Thermal-Hydraulic Analysis and Design Optimization of ITER Upper ELM Coils[J]. Plasma Science and Technology, 2014, 16(10): 978-983. DOI: 10.1088/1009-0630/16/10/14
    [6]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Mechanical Analysis and Optimization of ITER Upper ELM Coil & Feeder[J]. Plasma Science and Technology, 2014, 16(8): 794-799. DOI: 10.1088/1009-0630/16/8/11
    [7]KANG Weishan(康伟山), YUAN Tao(袁涛), SUN Qian(孙倩), WU Jihong(吴继红), CHEN Jiming(谌继明). Numerical Analyses of Electromagnetic Forces on the ITER Blanket Module Shield Block During Major Disruptions[J]. Plasma Science and Technology, 2014, 16(7): 701-705. DOI: 10.1088/1009-0630/16/7/12
    [8]CEN Yishun (岑义顺), LI Qiang (李强), DING Yonghua (丁永华), CAI Lijun (蔡立君), et al.. Stress and Thermal Analysis of the In-Vessel RMP Coils in HL-2M[J]. Plasma Science and Technology, 2013, 15(9): 939-944. DOI: 10.1088/1009-0630/15/9/20
    [9]LEI Mingzhun (雷明准), SONG Yuntao (宋云涛), WANG Songke (王松可), WANG Xianwei (汪献伟). Electromagnetic and Stress Analyses of the ITER Equatorial Thermal Shield[J]. Plasma Science and Technology, 2013, 15(8): 830-833. DOI: 10.1088/1009-0630/15/8/22
    [10]ZHU Dahuan (朱大焕), WANG Kun (王坤), WANG Xianping (王先平), CHEN Junling (陈俊凌), FANG Qianfeng (方前锋). Analysis of residual thermal stress in CVD-W coating as plasma facing material[J]. Plasma Science and Technology, 2012, 14(7): 656-660. DOI: 10.1088/1009-0630/14/7/20

Catalog

    Article views (211) PDF downloads (271) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return