Advanced Search+
Marian NEGREA. Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field[J]. Plasma Science and Technology, 2020, 22(1): 15101-015101. DOI: 10.1088/2058-6272/ab491e
Citation: Marian NEGREA. Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field[J]. Plasma Science and Technology, 2020, 22(1): 15101-015101. DOI: 10.1088/2058-6272/ab491e

Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field

Funds: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the EURATOM research and training program 2014–2018 under Grant Agreement No. 633053.
More Information
  • Received Date: July 17, 2019
  • Revised Date: September 29, 2019
  • Accepted Date: September 29, 2019
  • We calculate the diffusion coefficients for ions moving in a prescribed electromagnetic field. The field is considered to be a superposition of an electrostatic stochastic field and a space-dependent and sheared magnetic field. We have considered as parameters involved in the calculation of the diffusion coefficients the shear ion Kubo number Ksion, the electrostatic Kubo number K, the parallel shear ion Kubo number Kzsion, and the parallel thermal ion Kubo number Kz ion. A geometrical parameter which is the measure of the product of the stochastic perpendicular correlation length and the gradient in the magnetic field strength (see definitions in the text) is found not to be important in our calculation. The results concerning the diffusion coefficients obtained in our model are in agreement with experimental data and with those corresponding to other models, and the neoclassical and anomalous values for the diffusion coefficients are obtained.
  • [1]
    Balescu R 1988 Transport Processes in Plasmas, vol I Classical Transport (Amsterdam: North-Holland)
    [2]
    Balescu R 1988 Transport Processes in Plasmas, vol II, Neoclassical Transport (Amsterdam: North-Holland)
    [3]
    Hinton F L and Hazeltine R D 1976 Rev. Mod. Phys. 48 239
    [4]
    Isichenko M B 1991 Plasma Phys. Contr. Fusion 33 795
    [5]
    Isichenko M B 1992 Rev. Mod. Phys. 64 961
    [6]
    Ottaviani M 1992 Europhys. Lett. 20 111
    [7]
    Misguich J H et al 1998 Physicalia Mag. 20 103
    [8]
    Petrisor I 2016 Rom. J. Phys. 61 217
    [9]
    Vlad M et al 1998 Phys. Rev. E 58 7359
    [10]
    Vlad M et al 2002 Nucl. Fusion 42 157
    [11]
    Negrea M, Petrisor I and Balescu R 2004 Phys. Rev. E 70 046409
    [12]
    Balescu R, Petrisor I and Negrea M 2005 Plasma Phys.Control. Fusion 47 2145
    [13]
    Negrea M and Petrisor I 2006 Physics AUC 16 28
    [14]
    Negrea M, Petrisor I and Weyssow B 2007 Plasma Phys.Control. Fusion 49 1767
    [15]
    Petrisor I, Negrea M and Weyssow B 2007 Phys. Scr. 75 1
    [16]
    Negrea M, Petrisor I and Constantinescu D 2010 Rom. J. Phys.55 1013
    [17]
    Petrisor I and Negrea M 2012 Physics AUC 22 68
    [18]
    Negrea M, Petrisor I and Constantinescu D 2014 Physics AUC 24 116
    [19]
    Negrea M, Petrisor I and Weyssow B 2008 J. Optoelectron.Adv. Mater. 10 1942
    [20]
    Negrea M, Petrisor I and Weyssow B 2008 Phys. Scr. 77 055502
    [21]
    Negrea M, Petrisor I and Weyssow B 2008 J. Optoelectron.Adv. Mater. 10 1946
    [22]
    Shalchi A, Negrea M and Petrisor I 2016 Phys. Plasmas 23 072306
    [23]
    Negrea M, Petrisor I and Shalchi A 2017 Phys. Plasmas 24 112303
    [24]
    Pometescu N, Negrea M and Rotaru P 1998 Plasma Phys.Control. Fusion 40 1383
    [25]
    Steinbrecher G et al 1997 Plasma Phys. Control. Fusion 39 2039
    [26]
    Petrisor I et al 2012 Proceedings of the 2012 International Conference on High Performance Computing and Simulation, HPCS 6266983 623–7
    [27]
    Horton W 1985 Plasma Phys. Contr. Fusion 27 937
    [28]
    Weyssow B, Misguich J H and Balescu R 1991 Plasma Phys.Control. Fusion 33 763
    [29]
    Balescu R 2005 Aspects on Anomalous Transport in Plasmas (Bristol: Institute of Physics Publishing)
    [30]
    Negrea M et al 2011 Plasma Phys. Control. Fusion 53 085022
    [31]
    Scott B D 2002 New J. Phys. 4 52.1
    [32]
    Wesson J 1997 Tokamaks 2nd edn (New Year: Oxford University Press)
    [33]
    Giroud C et al (the JET EFDA Contributors) 2007 Nucl.Fusion 47 313
    [34]
    Cimpoiasu R 2017 J. Nonlinear Math. Phys. 24 531
    [35]
    Cimpoiasu R 2014 Phys. Plasmas 21 042118
    [36]
    Negrea M 2019 Plasma Phys. Control. Fusion 61 065004
  • Related Articles

    [1]Artemii Belostotskii, Anton Melnikov, Ravil Usmanov, Andrei Gavrikov, Valentin Smirnov. Experimental study of charge composition of diffuse vacuum arc in axial magnetic field by optical spectra[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adb4c2
    [2]Kaibang WU, Lai WEI, Zhengxiong WANG. Analysis of anomalous transport based on radial fractional diffusion equation[J]. Plasma Science and Technology, 2022, 24(4): 045101. DOI: 10.1088/2058-6272/ac41bd
    [3]Wenzheng LIU (刘文正), Maolin CHAI (柴茂林), Wenlong HU (胡文龙), Luxiang ZHAO (赵潞翔), Jia TIAN (田甲). Generation of atmospheric pressure diffuse dielectric barrier discharge based on multiple potentials in air[J]. Plasma Science and Technology, 2019, 21(7): 74004-074004. DOI: 10.1088/2058-6272/aafdf8
    [4]Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef
    [5]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [6]Cheng ZHANG (章程), Jintao QIU (邱锦涛), Fei KONG (孔飞), Xingmin HOU (侯兴民), Zhi FANG (方志), Yu YIN (殷禹), Tao SHAO (邵涛). Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air[J]. Plasma Science and Technology, 2018, 20(1): 14011-014011. DOI: 10.1088/2058-6272/aa8c6e
    [7]Wenzheng LIU (刘文正), Tahan WANG (王踏寒), Xiaozhong CHEN (陈晓中), Chuanlong MA (马传龙). Characteristics and application of diffuse discharge of water electrode in air[J]. Plasma Science and Technology, 2018, 20(1): 14003-014003. DOI: 10.1088/2058-6272/aa8fc5
    [8]GU Jianwei (顾建伟), ZHANG Cheng (章程), WANG Ruixue (王瑞雪), YAN Ping (严萍), SHAO Tao (邵涛). Improvement of Spatial Uniformity of Nanosecond-Pulse Diffuse Discharges in a Multi-Needle-to-Plane Gap[J]. Plasma Science and Technology, 2016, 18(3): 230-235. DOI: 10.1088/1009-0630/18/3/03
    [9]YU Xingang (余新刚), GOU Fujun (苟富均). Molecular Dynamics Study on the Diffusion Properties of Hydrogen Atoms in Bulk Tungsten[J]. Plasma Science and Technology, 2013, 15(7): 710-715. DOI: 10.1088/1009-0630/15/7/19
    [10]Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331.
  • Cited by

    Periodical cited type(3)

    1. Wu, K., Liu, J., Liu, S. et al. Analysis of anomalous transport with temporal fractional transport equations in a bounded domain. Chinese Physics B, 2023, 32(11): 110502. DOI:10.1088/1674-1056/acedf3
    2. Cimpoiasu, R., Constantinescu, R., Pauna, A.S. Solutions of the bullough–dodd model of scalar field through jacobi-type equations. Symmetry, 2021, 13(8): 1529. DOI:10.3390/sym13081529
    3. Petre, E., Selişteanu, D., Roman, M. Advanced nonlinear control strategies for a fermentation bioreactor used for ethanol production. Bioresource Technology, 2021. DOI:10.1016/j.biortech.2021.124836

    Other cited types(0)

Catalog

    Article views (211) PDF downloads (271) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return