Advanced Search+
HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
Citation: HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12

Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge

Funds: supported by National Natural Science Foundation of China (No.51177007) and Ministry of Science and Technology of China (No.2009AA064101-4)
More Information
  • Received Date: February 26, 2012
  • An atmospheric-pressure argon plasma jet with screw ring-ring electrodes in surface dielectric barrier discharge is generated by a sinusoidal excitation voltage at 8 kHz. The discharge characteristics, such as rotational and vibrational temperature of nitrogen, electronic excitation temperature, oxygen atomic density, nitrogen molecular density, and average electron density, are estimated. It is found that the rotational temperature of nitrogen is in the range of 352 ∼ 392 K by comparing the simulated spectrum with the measured spectrum at the C 3 Π u → B 3 Π g (?ν = −2) band transition, the electronic excitation temperature is found to be in the range of 3127 ∼ 3230 K by using the Boltzmann plot method, the oxygen atomic and nitrogen molecular density are of the order of magnitude of 10 16 cm −3 by the actinometry method, and the average electron density is of the order of magnitude of 10 12 cm −3 by the energy balance equation. Besides, the effective power, conduction, and displacement current are measured during the discharge.
  • Related Articles

    [1]Hanyu ZHANG, Lina ZHOU, Yueqiang LIU, Guangzhou HAO, Shuo WANG, Xu YANG, Yutian MIAO, Ping DUAN, Long CHEN. Deep learning approaches to recover the plasma current density profile from the safety factor based on Grad–Shafranov solutions across multiple tokamaks[J]. Plasma Science and Technology, 2024, 26(5): 055101. DOI: 10.1088/2058-6272/ad13e3
    [2]Haochen FAN, Guoqiang LI, Jinping QIAN, Xuexi ZHANG, Xiaohe WU, Yuqi CHU, Xiang ZHU, Hui LIAN, Haiqing LIU, Bo LYU, Yifei JIN, Qing ZANG, Jia HUANG. Kinetic equilibrium reconstruction with internal safety factor profile constraints on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(4): 045102. DOI: 10.1088/2058-6272/ad0d48
    [3]Yemin HU, Liuqing WANG, Shuhang BAI, Zhi YU, Tianyang XIA. Numerical analysis for the free-boundary current reversal equilibrium in the AC plasma current operation in a tokamak[J]. Plasma Science and Technology, 2024, 26(2): 025102. DOI: 10.1088/2058-6272/ad0c98
    [4]Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c
    [5]Zhen ZHENG (郑振), Nong XIANG (项农), Jiale CHEN (陈佳乐), Siye DING (丁斯晔), Hongfei DU (杜红飞), Guoqiang LI (李国强), Yifeng WANG (王一丰), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Bo LYU (吕波), Qing ZANG (臧庆). Kinetic equilibrium reconstruction for the NBI-and ICRH-heated H-mode plasma on EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65103-065103. DOI: 10.1088/2058-6272/aab262
    [6]Hailong GAO (高海龙), Tao XU (徐涛), Zhongyong CHEN (陈忠勇), Ge ZHUANG (庄革). Plasma equilibrium calculation in J-TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(11): 115101. DOI: 10.1088/2058-6272/aa7f26
    [7]WANG Zhongtian (王中天), WANG Long (王龙), LONG Yongxing (龙永兴), DONG Jiaqi (董家齐), HE Zhixiong (何志雄), LIU Yu (刘宇), TANG Changjian (唐昌建). Shaping Effects of the E-Fishbone in Tokamaks[J]. Plasma Science and Technology, 2013, 15(1): 12-16. DOI: 10.1088/1009-0630/15/1/03
    [8]LI Li(李莉), LIU Yue (刘悦), XU Xinyang(许欣洋), XIA Xinnian(夏新念). The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks[J]. Plasma Science and Technology, 2012, 14(1): 14-19. DOI: 10.1088/1009-0630/14/1/04
    [9]HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430.
    [10]Yukihiro TOMITA, Gakushi KAWAMURA, HUANG Zhihui, PAN Yudong, YAN Longwen. Dust Charging and Dynamics in Tokamaks[J]. Plasma Science and Technology, 2011, 13(1): 11-14.

Catalog

    Article views (271) PDF downloads (2089) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return