Advanced Search+
Xiaoxi DUAN (段晓溪), Benqiong LIU (刘本琼), Huige ZHANG (张惠鸽), Ben LI (李犇), Jiting OUYANG (欧阳吉庭). Various patterns in dielectric barrier glow discharges simulated by a dynamic model[J]. Plasma Science and Technology, 2019, 21(8): 85401-085401. DOI: 10.1088/2058-6272/ab0d51
Citation: Xiaoxi DUAN (段晓溪), Benqiong LIU (刘本琼), Huige ZHANG (张惠鸽), Ben LI (李犇), Jiting OUYANG (欧阳吉庭). Various patterns in dielectric barrier glow discharges simulated by a dynamic model[J]. Plasma Science and Technology, 2019, 21(8): 85401-085401. DOI: 10.1088/2058-6272/ab0d51

Various patterns in dielectric barrier glow discharges simulated by a dynamic model

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11875238, 11305156) and the Science Challenge Project (No. TZ2016001).
More Information
  • Received Date: October 17, 2018
  • Revised Date: March 04, 2019
  • Accepted Date: March 05, 2019
  • In this paper, various patterns of dielectric barrier glow discharge simulated by a phenomenological dynamic model are reported. The model is constructed based on the basic dynamic process of dielectric barrier glow discharge and involves the voltage-transfer characteristic as well as the lateral inhibition effect. In simulations, different driving voltage profiles are applied to achieve one or two pulsed discharges in each half-period and the corresponding pattern evolution is investigated. The final stable patterns driven by a rectangular wave voltage organize simply as stationary striations or hexagonal lattices. The patterns driven by a multi-step wave appear to be much more complicated, with complementary striations, concentric rings and square superlattices observed. The evolutions of these patterns from the initial uniform state are described and it is found that the spreading of the inhibition effect plays a key role in these evolutions. The numerical simulations in the present work are in excellent accordance with previous experiments and fluid modeling. This dynamic model proves to be a convenient and promising approach to reproducing different pattern structures and pattern evolutions in dielectric barrier glow discharge systems.
  • [1]
    Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
    [2]
    Busse F H 1978 Rep. Prog. Phys. 41 1929
    [3]
    Jakobsen P K et al 1992 Phys. Rev. A 45 8129
    [4]
    Pearson J E 1993 Science 261 189
    [5]
    Ouyang Q and Swinney H L 1991 Nature 352 610
    [6]
    Meinhardt H 1992 Rep. Prog. Phys. 55 797
    [7]
    Kicheva A, Cohen M and Briscoe J 2012 Science 338 210
    [8]
    Gurevich E L et al 2003 Phys. Rev. Lett. 91 154501
    [9]
    Stollenwerk L et al 2006 Phys. Rev. Lett. 96 255001
    [10]
    Breazeal W, Flynn K M and Gwinn E G 1995 Phys. Rev. E 52 1503
    [11]
    Guikema J et al 2000 Phys. Rev. Lett. 85 3817
    [12]
    Bernecker B et al 2009 Eur. Phys. J. Appl. Phys. 47 22808
    [13]
    Ouyang J T et al 2018 Plasma Sci. Technol. 20 103002
    [14]
    Callegari T, Bernecker B and Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003
    [15]
    Duan X X, He F and Ouyang J T 2012 Plasma Sources Sci. Technol. 21 015008
    [16]
    Xu S W et al 2013 Phys. Plasmas 20 083515
    [17]
    Purwins H G, B?deker H U and Amiranashvili S 2010 Adv. Phys. 59 485
    [18]
    Woesler R et al 1996 Phys. D Nonlinear Phenom. 91 376
    [19]
    Schenk C P et al 1997 Phys. Rev. Lett. 78 3781
    [20]
    Li B et al 2015 Phys. Plasmas 22 123508
    [21]
    Boeuf J P 2003 J. Phys. D Appl. Phys. 36 R53
    [22]
    Duan X X et al 2009 Phys. Rev. E 80 016202 8
  • Related Articles

    [1]Yuhui ZHANG (张雨晖), Wenjun NING (宁文军), Dong DAI (戴栋), Qiao WANG (王乔). Influence of nitrogen impurities on the characteristics of a patterned helium dielectric barrier discharge at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(7): 74003-074003. DOI: 10.1088/2058-6272/ab10a7
    [2]Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814
    [3]Jianyu FENG (冯建宇), Lifang DONG (董丽芳), Caixia LI (李彩霞), Ying LIU (刘莹), Tian DU (杜天), Fang HAO (郝芳). Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge[J]. Plasma Science and Technology, 2017, 19(5): 55401-055401. DOI: 10.1088/2058-6272/aa594a
    [4]YAO Shuiliang (姚水良), WENG Shan (翁珊), JIN Qi (金旗), HAN Jingyi (韩竞一), JIANG Boqiong (江博琼), WU Zuliang (吴祖良). Equation of Energy Injection to a Dielectric Barrier Discharge Reactor[J]. Plasma Science and Technology, 2016, 18(8): 804-811. DOI: 10.1088/1009-0630/18/8/03
    [5]LU Xiaofei (陆小飞), FU Peng (傅鹏), ZHUANG Ming (庄明), QIU Lilong (邱立龙), HU Liangbing (胡良兵). Process Modeling and Dynamic Simulation for EAST Helium Refrigerator[J]. Plasma Science and Technology, 2016, 18(6): 693-698. DOI: 10.1088/1009-0630/18/6/18
    [6]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [7]LIN Xin (林莘), WANG Feiming (王飞鸣), XU Jianyuan (徐建源), XIA Yalong (夏亚龙), LIU Weidong (刘卫东). Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 223-229. DOI: 10.1088/1009-0630/18/3/02
    [8]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [9]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [10]SONG Xinxin (宋新新), TAN Zhenyu (谭震宇), CHEN Bo (陈波), ZHANG Yuantao (张远涛). A Computational Study on the Discharge Characteristics of Atmospheric Dielectric Barrier Discharges at a Constant Power[J]. Plasma Science and Technology, 2013, 15(10): 1025-1030. DOI: 10.1088/1009-0630/15/10/12
  • Cited by

    Periodical cited type(14)

    1. Wen, Z., Wang, Z., Jiang, X. et al. Effects of Preionization Assembly Structural Parameters on Triggering Performance of Multigap Gas Switch Gaps. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3541590
    2. Zhai, R., Yin, J., Hu, Y. et al. A 200 kV Trigger Generator Based on Pseudospark Switch and Pre-Ionized Peaking Switch. Lecture Notes in Electrical Engineering, 2025. DOI:10.1007/978-981-97-8780-7_54
    3. Zhai, R., Yin, J., Hu, Y. et al. Design and investigation of a capacitance-coupling pre-ionized sharpening switch. Review of Scientific Instruments, 2024, 95(2): 023507. DOI:10.1063/5.0185120
    4. Zhai, R., Zhang, T., Yin, J. et al. A Compact UV-Illuminated Three-Electrode Field-Distortion Gas Switch With Sub-Nanosecond Jitter. IEEE Transactions on Plasma Science, 2024, 52(5): 1810-1814. DOI:10.1109/TPS.2024.3414864
    5. Kumar, G.V., Verma, R., Singh, G. et al. An experimental and numerical study: to investigate the switching characteristics of a field-distortion sparkgap switch in various SF6 admixtures. Engineering Research Express, 2023, 5(4): 045079. DOI:10.1088/2631-8695/ad0fc2
    6. Wen, Z., Wang, Z., Liu, Y. et al. Study on Multichannel Discharge Characteristics of Multigap Gas Switch Gaps. IEEE Transactions on Plasma Science, 2023, 51(11): 3348-3357. DOI:10.1109/TPS.2023.3328212
    7. Wen, Z., Jiang, M., Wang, Z. et al. Numerical Investigation of Runaway Electrons during the Breakdown of Homogeneous Electric Field Air Gaps under Nanosecond Pulse Voltage. IEEE Transactions on Plasma Science, 2023, 51(8): 2124-2133. DOI:10.1109/TPS.2023.3289993
    8. Yang, M., Di, H., Qu, B. et al. Design of a Small-Scale Laser-Triggered Pseudo-Spark Switch. 2023. DOI:10.1109/ICEMCE60359.2023.10490682
    9. Dong, B., Tao, L., Li, Z. et al. A Gas Gap Switch Scheme for Commutation Branch of DC Circuit Breakers and Its Induced Breakdown Characteristics | [机械式直流断路器换流支路用气体间隙开关方案及其诱导击穿特性]. Gaodianya Jishu/High Voltage Engineering, 2022, 48(12): 4863-4872. DOI:10.13336/j.1003-6520.hve.20220474
    10. Zeng, F., Li, S., Cai, H. et al. Investigation on the electrode surface roughness effects on a repetitive self-breakdown gas switch. Plasma Science and Technology, 2022, 24(6): 065506. DOI:10.1088/2058-6272/ac5ffb
    11. Dong, B., Zhang, Z., Xiang, N. et al. Study on Triggering Characteristics and Induced Breakdown Rules of SF Gap Switch Plasma Jets at Extremely Low Working Voltage. IEEE Transactions on Plasma Science, 2022, 50(4): 873-882. DOI:10.1109/TPS.2022.3155565
    12. Cheng, L., Xiang, N., Li, K. et al. Reliability improvement of gas discharge tube by suppressing the formation of short-circuit pathways. Plasma Science and Technology, 2022, 24(3): 035501. DOI:10.1088/2058-6272/ac479c
    13. Dong, B., Zhang, Z., Li, Z. et al. Induced Breakdown Law of Plasma Jet-triggered SF6 Gap Switch at Very Low Operating Coefficient | [极低工作系数下SF6间隙开关喷射等离子体诱导击穿作用规律]. Gaodianya Jishu/High Voltage Engineering, 2022, 48(1): 348-357. DOI:10.13336/j.1003-6520.hve.20211321
    14. Jiang, H., Jiang, X., Sun, F. et al. Design and Experiment Analysis of a Low Inductance Three-Electrode Field-Distortion Gas Switch. IEEE Transactions on Plasma Science, 2019, 47(8): 4114-4120. DOI:10.1109/TPS.2019.2926853

    Other cited types(0)

Catalog

    Article views (220) PDF downloads (118) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return