Advanced Search+
Jianyu FENG (冯建宇), Lifang DONG (董丽芳), Caixia LI (李彩霞), Ying LIU (刘莹), Tian DU (杜天), Fang HAO (郝芳). Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge[J]. Plasma Science and Technology, 2017, 19(5): 55401-055401. DOI: 10.1088/2058-6272/aa594a
Citation: Jianyu FENG (冯建宇), Lifang DONG (董丽芳), Caixia LI (李彩霞), Ying LIU (刘莹), Tian DU (杜天), Fang HAO (郝芳). Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge[J]. Plasma Science and Technology, 2017, 19(5): 55401-055401. DOI: 10.1088/2058-6272/aa594a

Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge

Funds: This work was supported by National Natural Science Foun?dation of China (Nos. 11375051 and 11505044), Key Basic Research Project in the application basic research plan of Hebei Province (No. 15961105D) and the Research Foundation of Education Bureau of Hebei Province, China (No. LJRC011).
More Information
  • Received Date: August 24, 2016
  • The hollow hexagonal pattern involved in surface discharges is firstly investigated in a dielectric barrier discharge system. The spatiotemporal structures of the pattern are studied using an intensified charge-coupled device and photomultiplier. Instantaneous images taken by an intensified charge-coupled device and optical correlation measurements show that the surface discharges are induced by volume discharges. The optical signals indicate that the discharge filaments constituting the hexagonal frame discharge randomly at the first current pulse or the second pulse, once or twice. There is no interleaving of several sub-lattices, which indicates that the ‘memory’ effect is no longer in force due to surface discharges. By using the emission spectrum method, both the molecule vibration temperature and electron density of the surface discharges are larger than that of the volume discharges.
  • [1]
    Rucklidge A M, Silber M and Skeldon A C 2012 Phys. Rev. Lett. 108 074504
    [2]
    Skeldon A C and Porter J 2011 Phys. Rev. E 84 016209
    [3]
    Chen Z L et al 2011 Phys. Rev. Lett. 106 133601
    [4]
    Sinclair J and Walhout M 2012 Phys. Rev. Lett. 108 035005
    [5]
    Opaits D F et al 2008 Phys. Plasmas 15 073505
    [6]
    Babaeva N Y and Kushner M J 2014 Plasma Sources Sci. Technol. 23 065047
    [7]
    Dong L F et al 2007 Phys. Rev. E 76 046210
    [8]
    Dong L F, Fan W L and Pan Y Y 2010 Plasma Sci. Technol. 12 172
    [9]
    Dong L F et al 2013 Phys. Rev. E 87 042914
    [10]
    Dong L F et al 2012 Phys. Rev. E 85 066403
    [11]
    Dong L F et al 2012 Phys. Plasmas 19 052304
    [12]
    Shao T et al 2014 Appl. Phys. Lett. 105 071607
    [13]
    Zhang C et al 2014 Appl. Surf. Sci. 311 468
    [14]
    Zanin A L et al 2002 Appl. Phys. Lett. 81 3338
    [15]
    Dong L F et al 2008 Plasma Sources Sci. Technol. 17 015015
    [16]
    Herzberg G 1950 Molecular Spectra and Molecular Structure (New York: Van Nostrand Reinhold)
  • Related Articles

    [1]Song JIANG (姜松), Lifei HUANG (黄利飞), Zhonghang WU (吴忠航), Yonggang WANG (王永刚), Zi LI (李孜), Junfeng RAO (饶俊峰). Research on the characteristics of atmospheric air dielectric barrier discharge under different square wave pulse polarities[J]. Plasma Science and Technology, 2021, 23(12): 125404. DOI: 10.1088/2058-6272/ac2b11
    [2]Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
    [3]Dan ZHAO (赵丹), Feng YU (于锋), Amin ZHOU (周阿敏), Cunhua MA (马存花), Bin DAI (代斌). High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 14020-014020. DOI: 10.1088/2058-6272/aa861c
    [4]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [5]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [6]XU Yan (徐艳), ZHANG Xiaoqing (张晓晴), YANG Chunhui (杨春辉), ZHANG Yanping (张燕平), YIN Yongxiang (印永祥). Recent Development of CO2 Reforming of CH4 by “Arc” Plasma[J]. Plasma Science and Technology, 2016, 18(10): 1012-1019. DOI: 10.1088/1009-0630/18/10/08
    [7]YAO Shuiliang (姚水良), WENG Shan (翁珊), JIN Qi (金旗), HAN Jingyi (韩竞一), JIANG Boqiong (江博琼), WU Zuliang (吴祖良). Equation of Energy Injection to a Dielectric Barrier Discharge Reactor[J]. Plasma Science and Technology, 2016, 18(8): 804-811. DOI: 10.1088/1009-0630/18/8/03
    [8]SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01
    [9]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [10]WU Tao (吴涛), WANG Xinbing (王新兵), WANG Shaoyi (王少义). Spectral Efficiency Extreme Ultraviolet Emission from CO2 Laser-Produced Tin Plasma Using a Grazing Incidence Flat-Field Spectrograph[J]. Plasma Science and Technology, 2013, 15(5): 435-438. DOI: 10.1088/1009-0630/15/5/08

Catalog

    Article views (327) PDF downloads (842) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return