Advanced Search+
Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
Citation: Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9

Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge

More Information
  • Received Date: October 22, 2017
  • A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length, ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.
  • [1]
    Lu X et al 2016 Phys. Rep. 630 1
    [2]
    Fanelli F and Fracassi F 2017 Surf. Coat. Technol. 322 174
    [3]
    Penkov O V et al 2015 J. Coat. Technol. Res. 12 225
    [4]
    Laroussi M, Lu X and Keidar M 2017 J. Appl. Phys. 122 020901
    [5]
    Lu X P and Laroussi M 2006 J. Appl. Phys. 100 063302
    [6]
    Lu X et al 2014 Phys. Rep. 540 123
    [7]
    Yous? M et al 2012 Plasma Sources Sci. Technol. 21 045003
    [8]
    Naidis G V 2011 J. Phys. D: Appl. Phys. 44 215203
    [9]
    Teschke M et al 2005 IEEE Trans. Plasma Sci. 33 310
    [10]
    Urabe K et al 2010 J. Phys. D: Appl. Phys. 43 095201
    [11]
    Naidis G V 2010 J. Phys. D: Appl. Phys. 43 402001
    [12]
    Wu S et al 2011 IEEE Trans. Plasma Sci. 39 2286
    [13]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
    [14]
    Zhang P and Kortshagen U 2006 J. Phys. D: Appl. Phys. 39 153
    [15]
    Yuan X H and Raja L L 2003 IEEE Trans. Plasma Sci. 31 495
    [16]
    Sakiyama Y and Graves D B 2006 J. Phys. D: Appl. Phys. 39 3451
    [17]
    WangYH andWangDZ2005 Phys. Plasmas 12 023503
    [18]
    Sakiyama Y et al 2010 Appl. Phys. Lett. 96 041501
    [19]
    Pouvesle J M, Bouchoule A and Stevefelt J 1982 J. Chem. Phys. 77 817
    [20]
    Breden D, Miki K and Raja L L 2012 Plasma Sources Sci. Technol. 21 034011
    [21]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [22]
    Xiong Z M et al 2013 J. Phys. D: Appl. Phys. 46 155203
    [23]
    Liu L J, Zhang Y and Ouyang J T 2013 High Voltage Eng. 39 2248 (in Chinese)
    [24]
    Liu L J, Zhang Y and Ouyang J T 2014 IEEE Trans. Plasma Sci. 42 2494
    [25]
    Zhu P et al 2017 Phys. Plasmas 24 103512
    [26]
    Lu X, Laroussi M and Puech V 2012 Plasma Sources Sci. Technol. 21 034005
    [27]
    Bussiahn R et al 2010 J. Phys. D: Appl. Phys. 43 165201
    [28]
    Jansky J et al 2011 J. Phys. D: Appl. Phys. 44 335201
    [29]
    Wu S et al 2016 Phys. Plasmas 23 103506
    [30]
    Xiong Z L et al 2010 IEEE Trans. Plasma Sci. 38 1001
    [31]
    Jarrige J, Laroussi M and Karakas E 2010 Plasma Sources Sci. Technol. 19 065005
    [32]
    Wang R X et al 2016 IEEE Trans. Plasma Sci. 44 393
    [33]
    XianY B et al 2014 Plasma Process. Polym. 11 1169
    [34]
    Breden D, Miki K and Raja L L 2011 Appl. Phys. Lett. 99 111501
    [35]
    Karakas E and Laroussi M 2010 J. Appl. Phys. 108 063305
    [36]
    Hong Y et al 2013 Thin Solid Films 531 408
    [37]
    Sobota A, Guaitella O and Rousseau A 2014 Plasma Sources Sci. Technol. 23 025016
    [38]
    Hao Z Y, Ji S C and Qiu A C 2012 IEEE Trans. Plasma Sci. 40 2822
    [39]
    Song J et al 2015 Phys. Plasmas 22 050703
    [40]
    Olszewski P et al 2014 Plasma Sources Sci. Technol. 23 015010
    [41]
    Liu X Y et al 2014 Plasma Sources Sci. Technol. 23 035007
    [42]
    Shi J J et al 2008 Phys. Plasmas 15 013504
    [43]
    Liu L J et al 2014 Appl. Phys. Lett. 104 244108
    [44]
    Chang Z S et al 2014 J. Appl. Phys. 115 103301
    [45]
    Jiang C, Chen M T and Gundersen M A 2009 J. Phys. D: Appl. Phys. 42 232002
    [46]
    Urabe K et al 2010 Jpn. J. Appl. Phys. 49 106001
  • Related Articles

    [1]Yuanyuan JIANG, Yanhui WANG, Yamin HU, Jiao ZHANG, Dezhen WANG. Numerical study of atmospheric-pressure argon plasma jet propagating into ambient nitrogen[J]. Plasma Science and Technology, 2022, 24(5): 054003. DOI: 10.1088/2058-6272/ac45e5
    [2]Bing QI (齐冰), Chunxu QIN (秦春旭), Haikun SHANG (尚海昆), Li XIONG (熊莉). Measurement of He2* density with an auxiliary measuring electrode in atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(8): 85402-085402. DOI: 10.1088/2058-6272/ab15a1
    [3]Shuqun WU (吴淑群), Xueyuan LIU (刘雪原), Guowang HUANG (黄国旺), Chang LIU (刘畅), Weijie BIAN (卞伟杰), Chaohai ZHANG (张潮海). Influence of high-voltage pulse parameters on the propagation of a plasma synthetic jet[J]. Plasma Science and Technology, 2019, 21(7): 74007-074007. DOI: 10.1088/2058-6272/ab00b0
    [4]Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
    [5]Jianyu FENG (冯建宇), Lifang DONG (董丽芳), Caixia LI (李彩霞), Ying LIU (刘莹), Tian DU (杜天), Fang HAO (郝芳). Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge[J]. Plasma Science and Technology, 2017, 19(5): 55401-055401. DOI: 10.1088/2058-6272/aa594a
    [6]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [7]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06
    [8]LI Zhanguo (李战国), LI Ying (李颖), CAO Peng (曹鹏), ZHAO Hongjie (赵红杰). Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet[J]. Plasma Science and Technology, 2013, 15(7): 696-701. DOI: 10.1088/1009-0630/15/7/17
    [9]Asma BEGUM, Mounir LAROUSSI, M. R. PERVEZ. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil[J]. Plasma Science and Technology, 2013, 15(7): 627-634. DOI: 10.1088/1009-0630/15/7/05
    [10]LV Xiaogui (吕晓桂), REN Chunsheng (任春生), MA Tengcai (马腾才), Feng Yan (冯岩), WANG Dezhen (王德真). An Atmospheric Large-Scale Cold Plasma Jet[J]. Plasma Science and Technology, 2012, 14(9): 799-801. DOI: 10.1088/1009-0630/14/9/05

Catalog

    Article views (242) PDF downloads (522) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return