Advanced Search+
LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
Citation: LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07

Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation

Funds: supported by the National Basic Research Program of China (No. 2014CB340205) and National Natural Science Foundation of China (Nos. 61301173 and 61473228)
More Information
  • The randomness of turbulent reentry plasma sheaths can affect the propagation and scattering properties of electromagnetic waves. This paper developed algorithms to estimate the influences. With the algorithms and typical reentry data, influences of GPS frequency and Ka frequency are studied respectively. Results show that, in terms of wave scattering, the scattering loss caused by the randomness of the turbulent plasma sheath increases with the increase of the ensemble average electron density, ensemble average collision frequency, electron density fluctua?tion and turbulence integral scale respectively. Also the scattering loss is much smaller than the dielectric loss. The scattering loss of Ka frequency is much less than that of the GPS frequency. In terms of wave propagation, the randomness arouses the fluctuations of amplitude and phase of waves. The fluctuations change with altitudes that when the altitude is below 30 km, fluctuations increase with altitude increasing, and when the altitude is above 30 km, fluctuations decrease with altitude increasing. The fluctuations of GPS frequency are strong enough to affect the tracking, telemetry, and command at appropriate conditions, while the fluctuations of Ka frequency are much more feeble. This suggests that the Ka frequency suffers less influences of the randomness of a turbulent plasma sheath.
  • 1 Rybak J P and Churchill R J. 1971, IEEE T. Aero.Elec. Sys., AES-7: 879 2 Luebbers R J, Hunsberger F and Kunz K S. 1991,IEEE Trans. Antennas Propag., 39: 29 3 Gregolre D J, Santoru J and Schumacher R W. 1992,Electromagnetic wave propagation in unmagnetized plasmas. Hughes Research Laboratory, Malibu, ADA250 710 4 Laroussi M and Roth J R. 1993, IEEE Trans. Plasma Sci., 21: 366 5 Manning R M. 2009, Analysis of electromagnetic wave propagation in a magnetized re-entry plasma sheath via the kinetic equation. Glenn Research Center, Cleveland, NASA-TM-2009-216096 6 Liu J F, Xi X L, Wan G B, et al. 2011, IEEE Trans.Plasma Sci., 39: 852 7 Shi L, Guo B L, Liu Y M, et al. 2012, Prog. Electromagn. Res., 123: 321 8 Jazi B, Rahmani Z and Shokri B. 2013, IEEE Trans.Plasma Sci., 41: 290 9 Cheng G X and Liu L. 2010, IEEE Trans. Plasma Sci.,38: 3109 10 Bai B W, Li X P, Liu Y M, et al. 2014, IEEE Trans.Plasma Sci., 42: 3365 11 Kovasznay L S G. 1953, J. Aero. Sci., 20: 657 12 Smits A J and Dussauge J P. 2006, Turbulent Shear Layers in Supersonic Flow, Second Edition, Springer,New York 13 Blaisdell G A, Mansour N N and Reynolds W C. 1993,J. Fluid Mech., 256: 443 14 Logan P. 1988, Modal analysis of hot-wire measurements in supersonic turbulence. 26th Aerospace Sciences Meeting, Reno, Nevada, AIAA-88-0423 15 Duan L and Choudhari M M. 2013, Numerical study of pressure fluctuations due to a mach 6 turbulent boundary layer. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, AIAA-2013-0532 16 Lin T C and Sproul L K. 2006, Comput. Fluids, 35:703 17 Lin T C, Rubin S G and Widhopf G F. 1981, A twolayer model for coupled three-dimensional viscous and inviscid flow calculations. AIAA 26th Aerospace Sciences Meeting, Jan. Louis, Missouri, AIAA-81-0118 18 Lin T C, Sproul L K, Hall D W, et al. 1995, Reentry plasma on electromagnetic wave propagation. 26th AIAA Plasmadynamics and Lasers Conference, San Diego, California, AIAA-95-1942 19 Mayzel Y N and Torgovanov V A. 1982, Measurement of scattering characteristics of radar targets. Foreign Technology Division, Wright-Patterson Air Force Base, AD-A149110 20 Hayami R A. 1992, The application of instrumented light gas gun facilities for hypervelocity aerophysics research. AIAA 17th Aerospace Ground Testing Conference, Nashville, Tennessee, AIAA-92-3998 21 Ishimaru A. 1997, Wave propagation and scattering in random media. IEEE Press, New York and Oxford University Press, Oxford, Tokyo, Melbourne 22 Field T R. Electromagnetic scattering from random media. Oxford University Press, Oxford, Tokyo, Melbourne 23 Rawhouser R. 1970, Overview of the AF Avionics Laboratory Reentry Electromagnetic Program. Washington, NASA, NASA-SP-252: 3 24 Swift C T, Beck F B, Thomson J, et al. 1970, RAM CIII S-Band Diagnostic Experiment. Hampton, Langley Research Center, NASA-SP-252: 137 25 Dix D M. 1962, Typical Values of Plasma Parameters around a Conical Re-Entry Vehicle. El Segundo, Aerospace Corporation, AD-295429
  • Related Articles

    [1]Jianyi CHEN (陈建义), Chengxun YUAN (袁承勋), Xiudong SUN (孙秀冬), Lei HUO (霍雷). Transmissivity of electromagnetic wave propagating in magnetized plasma sheath using variational method[J]. Plasma Science and Technology, 2019, 21(12): 125001. DOI: 10.1088/2058-6272/ab4199
    [2]Xuyang CHEN (陈旭阳), Fangfang SHEN (沈方芳), Yanming LIU (刘彦明), Wei AI (艾炜), Xiaoping LI (李小平). Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application[J]. Plasma Science and Technology, 2018, 20(6): 65503-065503. DOI: 10.1088/2058-6272/aaaa18
    [3]Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab
    [4]WANG Guibin (王桂滨), ZHANG Lin (张林), HE Feng (何锋), OUYANG Jiting (欧阳吉庭). Numerical Study on Microwave Scattering by Various Plasma Objects[J]. Plasma Science and Technology, 2016, 18(8): 791-797. DOI: 10.1088/1009-0630/18/8/01
    [5]ZHANG Lin (张林), OUYANG Jiting (欧阳吉庭). Microwaves Scattering by Underdense Inhomogeneous Plasma Column[J]. Plasma Science and Technology, 2016, 18(3): 266-272. DOI: 10.1088/1009-0630/18/3/09
    [6]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06
    [7]Takashi MINAMI, Shohei ARAI, Naoki KENMOCH, Hiroaki YASHIRO, Chihiro TAKAHASHI, Shinji KOBAYASHI, Tohru MIZUUCHI, Shinsuke OHSHIMA, Satoshi YAMAMOTO, Hiroyuki OKADA, Kazunobu NAGASAKI, et al. Present Status of the Nd:YAG Thomson Scattering System Development for Time Evolution Measurement of Plasma Profile on Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 240-243. DOI: 10.1088/1009-0630/15/3/10
    [8]HU Guangyue (胡广月), ZHANG Xiaoding (张小丁), ZHENG Jian (郑坚), LEI An-le (雷安乐), SHEN Baifei (沈百飞), XU Zhizhan, et al. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility[J]. Plasma Science and Technology, 2012, 14(10): 864-870. DOI: 10.1088/1009-0630/14/10/02
    [9]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
    [10]Kazumichi NARIHARA, Hiroshi HAYASHI. Asphericalizing the Light Collection Mirror for the 200-Point Thomson Scattering Diagnostic Installed on the Large Helical Device[J]. Plasma Science and Technology, 2011, 13(4): 415-419.

Catalog

    Article views (357) PDF downloads (772) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return