Advanced Search+
Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602
Citation: Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602

Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids

Funds: This work was supported by the National Science Centre (Grant No. UMO-2013/09/B/ST8/02054).
More Information
  • Received Date: December 20, 2017
  • Research interests have recently been directed towards electrical discharges in multi-phase environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous phase (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-phase environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-phase environments to be studied. This paper is an introduction to electrical discharges in multi-phase environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-phase fluid formed by air (a gaseous phase) and solid PM (a solid phase), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-phase fluid, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single-or two-phase fluids, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).
  • [1]
    Trichel G W 1938 Phys. Rev. 54 1078
    [2]
    Loeb L B 1965 Electrical Coronas, Their Basic Physical Mechanisms (Berkeley, CA: University of California Press)
    [3]
    Lama W L and Gallo C F 1974 J. Appl. Phys. 45 103
    [4]
    Sigmond R S and Goldman M 1981 Corona discharge physics and applications Electrical Breakdown and Discharges in Gases Part B ed E Kunhardt (New York: Springer) ch 1
    [5]
    Sigmond R S 1978 Corona discharges Electrical Breakdown of Gases edJ MMeekandJDCraggs (New York: Wiley) ch 4
    [6]
    Podlinski J et al 2007 PIV laser method for investigations of the dust density in?uence on the dust ?ow structure in electrostatic precipitator Proc. SPIE 6598 65980Y
    [7]
    Podlinski J et al 2008 J. Electrostat. 66 246
    [8]
    Adamiak K and Atten P 2009 IEEE Trans. Dielectr. Electr. Insul. 16 608
    [9]
    Farnoosh N et al 2011 IEEE Trans. Dielectr. Electr. Insul. 18 211
    [10]
    He B et al 2014 Sci. China—Phys. Mech. Astron. 57 1689
    [11]
    He B et al 2016 AIP Adv. 6 035114
    [12]
    Akishev Y S et al 2009 IEEE Trans. Plasma Sci. 37 1034
    [13]
    Mizeraczyk J et al 2016 Int. J. Plasma Environ. Sci. Tech. 10 57
    [14]
    Mizeraczyk J et al 2016 J. Phys. D: Appl. Phys. 49 205203
    [15]
    Berendt A and Mizeraczyk J 2016 J. Electrostat. 84 90
    [16]
    Berendt A et al 2017 Prz. Elektrotech. 93 224
    [17]
    Mizeraczyk J et al 2016 Negative corona discharge in a two-phase ?uid 15th Int. Symp. on High Pressure Low Temperature Plasma Chemistry vol 1 (Brno, Czech Republic, Masaryk University, Brno) p 404
    [18]
    Dordizadeh P et al 2015 J. Phys. D: Appl. Phys. 48 415203
    [19]
    Berendt A et al 2018 J. Electrostat. 92 24
    [20]
    Berendt A et al 2017 Eur. Phys. J. Appl. Phys. 77 30803
  • Related Articles

    [1]Guanlei DENG (邓官垒), Qikang JIN (金杞糠), Shengyong YIN (殷胜勇), Chao ZHENG (郑超), Zhen LIU (刘振), Keping YAN (闫克平). Experimental study on bacteria disinfection using a pulsed cold plasma jet with helium/ oxygen mixed gas[J]. Plasma Science and Technology, 2018, 20(11): 115503. DOI: 10.1088/2058-6272/aacaee
    [2]Ahmed Rida GALALY, Guido VAN OOST. Fast inactivation of microbes and degradation of organic compounds dissolved in water by thermal plasma[J]. Plasma Science and Technology, 2018, 20(8): 85504-085504. DOI: 10.1088/2058-6272/aac1b7
    [3]Youyi HU (胡友谊), Weidong ZHU (朱卫东), Kun LIU (刘坤), Leng HAN (韩冷), Zhenfeng ZHENG (郑振峰), Huimin HU (胡慧敏). Influence of water content on the inactivation of P. digitatum spores using an air–water plasma jet[J]. Plasma Science and Technology, 2018, 20(4): 44011-044011. DOI: 10.1088/2058-6272/aaa8da
    [4]Danijela VUJOŠEVIC, Uroš CVELBAR, Urška REPNIK, Martina MODIC, Saša LAZOVIC, Tina ZAVAŠNIK-BERGANT, Nevena PUAC, Boban MUGOŠA, Evangelos GOGOLIDES, Zoran Lj PETROVIC, Miran MOZETIC. Plasma effects on the bacteria Escherichia coli via two evaluation methods[J]. Plasma Science and Technology, 2017, 19(7): 75504-075504. DOI: 10.1088/2058-6272/aa656b
    [5]XIN Qing (辛青), LI Zhongjian (李中坚), LEI Lecheng (雷乐成), YANG Bin (杨彬). Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process[J]. Plasma Science and Technology, 2016, 18(9): 943-949. DOI: 10.1088/1009-0630/18/9/11
    [6]JIAO Juntao (焦俊韬), XIAO Dengming (肖登明), ZHAO Xiaoling (赵小令), DENG Yunkun (邓云坤). Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength[J]. Plasma Science and Technology, 2016, 18(5): 554-559. DOI: 10.1088/1009-0630/18/5/19
    [7]Raja DHOUIOUI, Philippe TEULET, Yann CRESSAULT, Hassen GHALILA, Riadh RIAHI, Nejm Eddine JAIDANE, Zohra BEN LAKHDAR. Calculation of Photo-Ionisation Cross Sections and Radiative Recombination Rate Coefficients for CO and CO + Molecules[J]. Plasma Science and Technology, 2014, 16(11): 1013-1019. DOI: 10.1088/1009-0630/16/11/04
    [8]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [9]Nasrin NAVABSAFA, Hamid GHOMI, Maryam NIKKHAH, Soheila MOHADES, et al.. Effect of BCD Plasma on a Bacteria Cell Membrane[J]. Plasma Science and Technology, 2013, 15(7): 685-689. DOI: 10.1088/1009-0630/15/7/15
    [10]Géraldine FAURE. Partition functions for diatomic molecules in plasmas out of thermal equilibrium[J]. Plasma Science and Technology, 2012, 14(3): 192-200. DOI: 10.1088/1009-0630/14/3/03
  • Cited by

    Periodical cited type(2)

    1. Zhang, M., Zhong, G., Huang, J. et al. Research on fusion neutron energy spectrum measurement using a Bonner sphere spectrometer based on a 4H-SiC detector | [基于 4H-SiC 探测器多球谱仪的聚变中子能谱测量研究]. He Jishu/Nuclear Techniques, 2024, 47(9): 090402. DOI:10.11889/j.0253-3219.2024.hjs.47.090402
    2. Zhang, Y., Zhong, G., Huang, L. et al. Study on the contribution matrix for EAST radial neutron camera system. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114602

    Other cited types(0)

Catalog

    Article views (234) PDF downloads (429) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return