Advanced Search+
Wenzheng LIU (刘文正), Ying BAO (包颖), Xiaoxia DUAN (段晓霞), Jian ZHANG (张坚). Study on water treatment effect of dispersion discharge plasma based on flowing water film electrode[J]. Plasma Science and Technology, 2021, 23(10): 105502. DOI: 10.1088/2058-6272/ac15ed
Citation: Wenzheng LIU (刘文正), Ying BAO (包颖), Xiaoxia DUAN (段晓霞), Jian ZHANG (张坚). Study on water treatment effect of dispersion discharge plasma based on flowing water film electrode[J]. Plasma Science and Technology, 2021, 23(10): 105502. DOI: 10.1088/2058-6272/ac15ed

Study on water treatment effect of dispersion discharge plasma based on flowing water film electrode

Funds: This research is financially supported by National Natural Science Foundation of China (No. 51 577 011).
More Information
  • Received Date: March 15, 2021
  • Revised Date: July 14, 2021
  • Accepted Date: July 18, 2021
  • To improve the utilization rate of plasma active species, in this study, a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow discharge in the atmosphere. Firstly, the electric field distribution characteristics of non-uniform air gap in the sawtooth dielectric layer are studied, and the influence of aspect ratio on the characteristics of diffuse discharge plasma is discussed. Subsequently, the effects of wire mesh, the inclination angle of the dielectric plate, and liquid inlet velocity on the flow characteristics of the water film electrode are analyzed. The results show that the non-uniform electric field distribution formed in the sawtooth groove can effectively inhibit the filamentous discharge, and the 1 mm flowing water film is directly used as the electrode, and high-active plasma is formed directly on the lower surface of the water film. In addition, a plasma flowing water treatment device is built to treat the methyl orange solution and observe its decolorization effect. The experimental results show that after 50 min of treatment, the decolorization rate of the methyl orange solution reaches 96%, which provides a new idea for industrial applications of wastewater treatment.
  • [1]
    Zhao L X et al 2020 Plasma Process. Polym. 17 1900148
    [2]
    Fenglei H et al 2020 J. Saudi Chem. Soc. 24 673
    [3]
    Liu W Z et al 2019 Plasma Sci. Technol. 22 034002
    [4]
    Wang Z Y et al 2020 React. Chem. Eng. 5 1845
    [5]
    Akiyama H and Akiyama M 2021 IEEJ Trans. Electr.Electron. Eng. 16 6
    [6]
    Sukhwal M et al 2019 Chemosphere 243 125377
    [7]
    Takeuchi N and Yasuoka K 2020 Japan. J. Appl. Phys. 60 SA0801
    [8]
    Burlica R et al 2006 J. Electrostat. 64 35
    [9]
    Nikiforov A Y 2009 IEEE Trans. Plasma Sci. 37 872
    [10]
    Wang X et al 2012 Electrochim. Acta 83 501
    [11]
    Sato M et al 1994 IEEE Trans. Ind. Appl. 32 106
    [12]
    Joshi A A et al 1995 J. Hazard. Mater. 41 3
    [13]
    Locke B et al 2006 Ind. Eng. Chem. Res. 45 882
    [14]
    Guo L et al 2018 Appl. Environ. Microbiol. 84 e00726
    [15]
    Chen C et al 2014 Plasma Chem. Plasma Process. 34 403
    [16]
    Shimizu K et al 2010 Int. J. Plasma Environ. Sci. Technol. 4 58
    [17]
    Wang H et al 2007 J. Hazard. Mater. 141 336
    [18]
    Pirdo K T et al 2017 IOP Conf. Ser. Earth Environ. Sci. 109 012004
    [19]
    Liu W Z et al 2014 Plasma Sci. Technol. 01 26
    [20]
    Liu Z C et al 2015 J. Phys. D: Appl. Phys. 48 495201
    [21]
    Xu D et al 2015 PLoS One 10 e0126963
    [22]
    Szili E J et al 2014 J. Phys. D: Appl. Phys. 47 152002
    [23]
    Machala Z et al 2013 Plasma Process. Polym. 10 649
    [24]
    Golubovskii Y B et al 2002 J. Phys. D: Appl. Phys. 35 751
    [25]
    Li M et al 2008 Appl. Phys. Lett. 92 31503
    [26]
    Liu Y et al 2012 Chem. Eng. Process. Process Intensification 56 10
    [27]
    Abdullah F H et al 2007 Dyes Pigm. 75 194
    [28]
    Jiang B et al 2014 Chem. Eng. J. 236 348
    [29]
    Wang B W et al 2017 J. Adv. Oxid. Technol. 20 20170021
    [30]
    Wang B W et al 2017 Chem. Eng. Sci. 168 90
    [31]
    Marotta E et al 2012 Water Res. 46 6239
    [32]
    Malik M A et al 2010 Plasma Chem. Plasma Process. 30 21
  • Related Articles

    [1]Rongjing DENG, Tingfeng MING, Bang LI, Qiqi SHI, Shanwei HOU, Shuqi YANG, Xiaoju LIU, Shaocheng LIU, Guoqiang LI, Xiang GAO, Yasuhiro SUZUKI, Yunfeng LIANG. VUV imaging of type-I ELM filamentary structures and their temporal characteristics on EAST[J]. Plasma Science and Technology, 2024, 26(11): 114002. DOI: 10.1088/2058-6272/ad621c
    [2]Tao ZHANG (张涛), Haiqing LIU (刘海庆), Guoqiang LI (李国强), Long ZENG (曾龙), Yao YANG (杨曜), Tingfeng MING (明廷凤), Xiang GAO (高翔), Hui LIAN (连辉), Kai LI (李凯), Yong LIU (刘永), Yingying LI (李颖颖), Tonghui SHI (石同辉), Xiang HAN (韩翔), the EAST team. Experimental observation of reverse- sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(11): 115101. DOI: 10.1088/2058-6272/aac9b5
    [3]Qi WANG (汪启), Qingquan YANG (杨清泉), Zhengmao SHENG (盛正卯), Guosheng XU (徐国盛), Jinping QIAN (钱金平), Ning YAN (颜宁), Yifeng WANG (王一丰), Heng ZHANG (张恒). Dependence of the internal inductance on the radial distance between the primary and secondary X-point surfaces in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105101. DOI: 10.1088/2058-6272/aad326
    [4]Zhen ZHENG (郑振), Nong XIANG (项农), Jiale CHEN (陈佳乐), Siye DING (丁斯晔), Hongfei DU (杜红飞), Guoqiang LI (李国强), Yifeng WANG (王一丰), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Bo LYU (吕波), Qing ZANG (臧庆). Kinetic equilibrium reconstruction for the NBI-and ICRH-heated H-mode plasma on EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65103-065103. DOI: 10.1088/2058-6272/aab262
    [5]Qingquan YANG (杨清泉), Fangchuan ZHONG (钟方川), Guosheng XU (徐国盛), Ning YAN (颜宁), Liang CHEN (陈良), Xiang LIU (刘祥), Yong LIU (刘永), Liang WANG (王亮), Zhendong YANG (仰振东), Yifeng WANG (王一丰), Yang YE (叶扬), Heng ZHANG (张恒), Xiaoliang LI (李小良). Combined Langmuir-magnetic probe measurements of type-I ELMy filaments in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65101-065101. DOI: 10.1088/2058-6272/aaab43
    [6]FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02
    [7]FU Bao(付豹), ZHANG Qiyong(张启勇), ZHU Ping(朱平), CHENG Anyi(成安义). The Application and Improvement of Helium Turbines in the EAST Cryogenic System[J]. Plasma Science and Technology, 2014, 16(5): 527-531. DOI: 10.1088/1009-0630/16/5/14
    [8]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [9]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [10]XU Ming, XU Xiaoyuan, WEN Yizhi, MA Jinxiu, XIE Jinlin, GAO Bingxi, LAN Tao, LIU Adi, YU Yi, HE Yinghua, WAN Baonian, HU Liqun, GAO Xiang. Electron Cyclotron Emission Imaging on the EAST Tokamak[J]. Plasma Science and Technology, 2011, 13(2): 167-171.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return