Advanced Search+
Peiyu JI (季佩宇), Jun YU (於俊), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Yan YANG (杨燕), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(2): 25505-025505. DOI: 10.1088/2058-6272/aa94bd
Citation: Peiyu JI (季佩宇), Jun YU (於俊), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Yan YANG (杨燕), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(2): 25505-025505. DOI: 10.1088/2058-6272/aa94bd

Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition

Funds: This work is supported by National Natural Science Foundation of China (Nos. 11175126, 11375126, 11435009, 11505123),the National Magnetic Confinement Fusion Program of China (Nos. 2014GB106005, 2010GB106000), a project funded by China Postdoctoral Science Foundation, and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
More Information
  • Received Date: August 31, 2017
  • A high growth rate fabrication of diamond-like carbon (DLC) films at room temperature was achieved by helicon wave plasma chemical vapor deposition (HWP-CVD) using Ar/CH4 gas mixtures. The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy. The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe. The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed. The growth rate of the DLC films reaches a maximum value of 54 μmh-1 at the CH4 flow rate of 85 sccm, which is attributed to the higher plasma density during the helicon wave plasma discharge. The CH and Hα radicals play an important role in the growth of DLC films. The results show that the Hα radicals are beneficial to the formation and stabilization of C=C bond from sp2 to sp3.
  • [1]
    Casiraghi C, Ferrari A C and Robertson J 2005 Phys. Rev. B 72 085401
    [2]
    Zhou B et al 2016 Diam. Relat. Mater. 69 191
    [3]
    Cloutier M et al 2014 Diam. Relat. Mater. 48 65
    [4]
    Chowdhury S, Laugier M T and Rahman I Z 2004 Thin Solid Films 447–448 174
    [5]
    Jones B J et al 2010 Diam. Relat. Mater. 19 685
    [6]
    Ferrari A C 2004 Surf. Coat. Technol. 180–181 190
    [7]
    Robertson J 2002 Mater. Sci. Eng. R 37 129
    [8]
    Wan S H 2009 Appl. Surf. Sci. 255 3817
    [9]
    Sahoo S et al 2010 Surf. Coat. Technol. 204 2817
    [10]
    Zhang D C, Shen B and Sun F H 2010 Appl. Surf. Sci. 256 2479
    [11]
    Gavrilov N V et al 2010 Surf. Coat. Technol. 204 4018
    [12]
    Jiang J L et al 2016 Appl. Surf. Sci. 379 516
    [13]
    Zhou J et al 2006 Plasma Sources Sci. Technol. 15 714
    [14]
    Wu M Z et al 2016 Appl. Surf. Sci. 376 26
    [15]
    Fang T Z et al 2001 Chin. Phys. Lett. 18 1098
    [16]
    Chen F F 1996 Phys. Plasmas 3 1783
    [17]
    Huang T Y et al 2016 Sci. China Phys. Mech. Astron. 55 1978
    [18]
    Celik M 2011 Spectrochim. Acta Part B 66 149
    [19]
    Endo K et al 2001 Solar Energy Mater. Solar Cells 66 283
    [20]
    Druyvesteyn M J 1930 Z. Phys. 64 781
    [21]
    Keiter P A, Scime E E and Balkey M M 1997 Phys. Plasmas 4 2741
    [22]
    Khatir S, Hirose A and Xiao C 2014 Surf. Coat. Technol. 253 96
    [23]
    DengX R et al 2014 Surf. Coat. Technol. 238 80
    [24]
    Teii K et al 2000 J. Appl. Phys. 87 4572
    [25]
    Sohbatzadeh F et al 2016 Superl. Microstruct. 89 231
    [26]
    Zhang J F et al 2009 Chin. Phys. Lett. 26 035203
    [27]
    Bian X C et al 2008 Surf. Coat. Technol. 202 5383
    [28]
    Hung J M et al 2011 Appl. Surf. Sci. 257 5508
    [29]
    Marques L et al 2009 Vacuum 83 1240
    [30]
    Zambrano G et al 2003 Surf. Coat. Technol. 172 144
    [31]
    Cicala G, Bruno P and Losacco A M 2004 Diam. Relat. Mater. 12 1361
    [32]
    Hassan M K, Pramanik B K and Hatta A 2006 Jpn. J. Appl. Phys. 45 8398
    [33]
    Hosseini S I, Shari?an M and Shokri B 2012 Surf. Coat. Technol. 213 285
    [34]
    Singha A et al 2006 J. Appl. Phys. 100 044910
    [35]
    Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
    [36]
    Irmer G and Dorner-Reisel A 2005 Adv. Eng. Mater. 7 694
    [37]
    Cui W G et al 2010 Surf. Coat. Technol. 205 1995
  • Related Articles

    [1]Mingjie ZHOU, Haiyun TAN, Lanjian ZHUGE, Xuemei WU. Tunable topological edge state in plasma photonic crystals[J]. Plasma Science and Technology, 2024, 26(11): 115501. DOI: 10.1088/2058-6272/ad62d5
    [2]Rui LI, Qihan WANG, Fucheng LIU, Kuangya GAO, Xiaohan HOU, Mengmeng JIA, Qing LI, Weili FAN. Reconfigurable (4, 62) and (4, 82) Archimedean plasma photonic crystals in dielectric barrier discharge[J]. Plasma Science and Technology, 2024, 26(6): 064008. DOI: 10.1088/2058-6272/ad341f
    [3]Liting GUO, Yuyang PAN, Guanglin YU, Zhaoyang WANG, Kuangya GAO, Weili FAN, Lifang DONG. Controllable and tunable plasma photonic crystals through a combination of photonic crystal and dielectric barrier discharge patterns[J]. Plasma Science and Technology, 2023, 25(8): 085501. DOI: 10.1088/2058-6272/acb52b
    [4]Yu MA(马宇), Hao ZHANG(张浩), Haifeng ZHANG(章海锋), Ting LIU(刘婷), Wenyu LI(李文煜). Nonreciprocal properties of 1D magnetized plasma photonic crystals with the Fibonacci sequence[J]. Plasma Science and Technology, 2019, 21(1): 15001-015001. DOI: 10.1088/2058-6272/aade85
    [5]ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01
    [6]QI Limei (亓丽梅), LI Chao (李超), FANG Guangyou (方广有), GAO Xiang (高翔). The Absorbing Properties of Two-Dimensional Plasma Photonic Crystals[J]. Plasma Science and Technology, 2015, 17(1): 4-9. DOI: 10.1088/1009-0630/17/1/02
    [7]GUO Bin (郭斌), PENG Li (彭莉), QIU Xiaoming (邱孝明). Tunability of One-Dimensional Plasma Photonic Crystals with an External Magnetic Field[J]. Plasma Science and Technology, 2013, 15(7): 609-613. DOI: 10.1088/1009-0630/15/7/01
    [8]S. PRASAD, Vivek SINGH, A. K. SINGH. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials[J]. Plasma Science and Technology, 2013, 15(5): 443-447. DOI: 10.1088/1009-0630/15/5/10
    [9]S. PRASAD, Vivek SINGH, A. K. SINGH. Properties of Ternary One Dimensional Plasma Photomic Crystals for an Obliquely Incident Electromagnetic Wave Considering the E®ect of Collisions in Plasma Layers[J]. Plasma Science and Technology, 2012, 14(12): 1084-1090. DOI: 10.1088/1009-0630/14/12/09
    [10]Laxmi Shiveshwari. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals[J]. Plasma Science and Technology, 2011, 13(4): 392-396.

Catalog

    Article views (250) PDF downloads (568) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return