Advanced Search+
A F POPOVICH, V G RALCHENKO, V K BALLA, A K MALLIK, A A KHOMICH, A P BOLSHAKOV, D N SOVYK, E E ASHKINAZI, V Yu YUROV. Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2017, 19(3): 35503-035503. DOI: 10.1088/2058-6272/19/3/035503
Citation: A F POPOVICH, V G RALCHENKO, V K BALLA, A K MALLIK, A A KHOMICH, A P BOLSHAKOV, D N SOVYK, E E ASHKINAZI, V Yu YUROV. Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2017, 19(3): 35503-035503. DOI: 10.1088/2058-6272/19/3/035503

Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition

Funds: This work was supported by the Russian Ministry of Education and Science (RMES), Agreement No. 14.613.21.0021, unique ID No. RFMEFI61314X0021 and the Department of Science & Technology (DST), India, grant No. GAP0246 under the joint RMES–DST Research Collaboration Agreement ‘Development of large size polycrystalline CVD diamond material for optical windows and support rods in high power microwave tubes’.
More Information
  • Received Date: June 08, 2016
  • Polycrystalline diamond (PCD)films 100 mm in diameter are grown by 915 MHz microwave plasma chemical vapor deposition (MPCVD) at different process parameters, and their thermal conductivity (TC)is evaluated by a laser flash technique (LFT)in the temperature range of 230–380 K. The phase purity and quality of the films are assessed by micro-Raman spectroscopy based on the diamond Raman peak width and the amorphous carbon (a-C)presence in the spectra. Decreasing and increasing dependencies for TC with temperature are found for high and low quality samples, respectively. TC, as high as 1950±230 W m−1K−1 at room temperature, is measured for the most perfect material. A linear correlation between the TC at room temperature and the fraction of the diamond component in the Raman spectrum for the films is established.
  • [1]
    Pomeroy J W et al 2014 Appl. Phys. Lett. 104 083513
    [2]
    Ueda K et al 2006 Diam. Relat. Mater. 15 1954
    [3]
    Conte G et al 2012 Nanotechnology 23 025201
    [4]
    Oh A 2015 J. Instrument. 10 C04038
    [5]
    Girolami M et al 2012 IEEE Electron Device Lett. 33 224
    [6]
    Thumm M 2001 Diam. Relat. Mater. 10 1692
    [7]
    Anoikin E et al 2015 Components and packaging for laser systems SPIE Proc. 9346 93460T
    [8]
    Rogalin V E et al 2012 Russ. Microelectron. 41 464
    [9]
    Peng Y H et al 2013 Opt. Lett. 38 1709
    [10]
    Dayton J A et al 2005 IEEE Trans. Electron Dev. 52 695
    [11]
    Coe S E and Sussmann R S 2000 Diam. Relat. Mater. 9 1726
    [12]
    Twitchen D et al 2001 Diam. Relat. Mater. 10 731
    [13]
    Woerner E et al 2003 Diam. Relat. Mater. 12 744
    [14]
    Graebner J E et al 1994 Phys. Rev. B 50 3702
    [15]
    Inyushkin A V et al 2008 Phys. Stat. Sol. (a) 205 2226
    [16]
    Sukhadolau A V et al 2005 Diam. Relat. Mater. 14 589
    [17]
    Bolshakov A P et al 2016 Diam. Relat. Mater. 62 49
    [18]
    Graebner J E et al 1996 Diam. Relat. Mater. 5 693
    [19]
    Anaya J et al 2016 Acta Mater. 103 141
    [20]
    Ando Y et al 2002 Diam. Relat. Mater. 11 596
    [21]
    Mallik A K et al 2014 J. Adv. Ceram. 3 56
    [22]
    King D et al 2008 Diam. Relat. Mater. 17 520
    [23]
    Füner M, Wild C and Koidl P 1999 Surf. Coat. Technol.116 853
    [24]
    Grotjohn T et al 2005 Diam. Relat. Mater. 14 288
    [25]
    Tsai H Y, Kuo K L and Chin J 2007 Soc. Mech. Eng. 28 157
    [26]
    Liang Q et al 2014 Cryst. Growth & Design 14 3234
    [27]
    Goyal V et al 2012 Adv. Funct. Mater. 22 1525
    [28]
    Mallik A K et al 2014 Process. Appl. Ceram. 8 69
    [29]
    Smolin A A et al 1993 Appl. Phys. Lett. 62 3449
    [30]
    Williams O A et al 2007 Chem. Phys. Lett. 445 255
    [31]
    Ekimov E A et al 2008 Diam. Relat. Mater. 17 838
    [32]
    Nepsha V I 1998 Handbook of Industrial Diamonds and Diamond Films ed M A Prelas et al (New York: Dekker)
    [33]
    Tamor M A and Everson M P 1994 J. Mater. Res. 9 1839
    [34]
    Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
    [35]
    Khomich A V et al 2013 J. Appl. Spectrosc. 80 707
    [36]
    Liu W L et al 2006 Appl. Phys. Lett. 89 171915
    [37]
    Bachmann P K et al 1995 Diam. Relat. Mater. 4 820
    [38]
    Ho C Y, Powell R W and Liley P E 1972 J. Phys. Chem. Ref. Data 1 279
    [39]
    Wada N and Solin S A 1981 Physica B 105 353
  • Related Articles

    [1]C LECHTE, G D CONWAY, TGÖRLER, T HAPPEL, the ASDEXUpgrade Team. Fullwave Doppler reflectometry simulations for density turbulence spectra in ASDEX Upgrade using GENE and IPF-FD3D[J]. Plasma Science and Technology, 2020, 22(6): 64006-064006. DOI: 10.1088/2058-6272/ab7ce8
    [2]M Serhan YILDIZ, Murat CELIK. Plume diagnostics of BUSTLab microwave electrothermal thruster using Langmuir and Faraday probes[J]. Plasma Science and Technology, 2019, 21(4): 45505-045505. DOI: 10.1088/2058-6272/aaf280
    [3]Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Min JIANG (蒋敏). Progress of microwave diagnostics development on the HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(9): 94007-094007. DOI: 10.1088/2058-6272/aad27b
    [4]Min JIANG (蒋敏), Zhongbing SHI (石中兵), Yilun ZHU (朱逸伦). Optimization of the optical system for electron cyclotron emission imaging diagnostics on the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(8): 84001-084001. DOI: 10.1088/2058-6272/aa62f7
    [5]Kai GAO (高凯), Nasr A M HAFZ, Song LI (李松), Mohammad IRZAIE, Guangyu LI (李光宇), Quratul AIN. Online plasma diagnostics of a laser-produced plasma[J]. Plasma Science and Technology, 2017, 19(1): 15506-015506. DOI: 10.1088/1009-0630/19/1/015506
    [6]ZHU Yilun (朱逸伦), ZHAO Zhenling (赵朕领), TONG Li (仝丽), CHEN Dongxu (陈东旭), XIE Jinlin (谢锦林), LIU Wandong (刘万东). Optics System Design of Microwave Imaging Reflectometry for the EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(4): 449-452. DOI: 10.1088/1009-0630/18/4/20
    [7]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [8]ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02
    [9]Amit K Srivastava, Manika Sharma, Imran Mansuri, Atish Sharma, Tushar Raval, Subrata Pradhan. Development and Integration of a Data Acquisition System for SST-1 Phase-1 Plasma Diagnostics[J]. Plasma Science and Technology, 2012, 14(11): 1002-1007. DOI: 10.1088/1009-0630/14/11/08
    [10]ZHANG Xing (张兴), YUAN Xi (袁熙), XIE Xufei (谢旭飞), FAN Tieshuan (樊铁栓) ), CHEN Jinxiang (陈金象), LI Xiangqing(李湘庆). The Design and Optimization of a Neutron Time-of-Flight Spectrometer with Double Scintillators for Neutron Diagnostics on EAST[J]. Plasma Science and Technology, 2012, 14(7): 675-682. DOI: 10.1088/1009-0630/14/7/24

Catalog

    Article views (289) PDF downloads (887) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return