Advanced Search+
A F POPOVICH, V G RALCHENKO, V K BALLA, A K MALLIK, A A KHOMICH, A P BOLSHAKOV, D N SOVYK, E E ASHKINAZI, V Yu YUROV. Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2017, 19(3): 35503-035503. DOI: 10.1088/2058-6272/19/3/035503
Citation: A F POPOVICH, V G RALCHENKO, V K BALLA, A K MALLIK, A A KHOMICH, A P BOLSHAKOV, D N SOVYK, E E ASHKINAZI, V Yu YUROV. Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2017, 19(3): 35503-035503. DOI: 10.1088/2058-6272/19/3/035503

Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition

Funds: This work was supported by the Russian Ministry of Education and Science (RMES), Agreement No. 14.613.21.0021, unique ID No. RFMEFI61314X0021 and the Department of Science & Technology (DST), India, grant No. GAP0246 under the joint RMES–DST Research Collaboration Agreement ‘Development of large size polycrystalline CVD diamond material for optical windows and support rods in high power microwave tubes’.
More Information
  • Received Date: June 08, 2016
  • Polycrystalline diamond (PCD)films 100 mm in diameter are grown by 915 MHz microwave plasma chemical vapor deposition (MPCVD) at different process parameters, and their thermal conductivity (TC)is evaluated by a laser flash technique (LFT)in the temperature range of 230–380 K. The phase purity and quality of the films are assessed by micro-Raman spectroscopy based on the diamond Raman peak width and the amorphous carbon (a-C)presence in the spectra. Decreasing and increasing dependencies for TC with temperature are found for high and low quality samples, respectively. TC, as high as 1950±230 W m−1K−1 at room temperature, is measured for the most perfect material. A linear correlation between the TC at room temperature and the fraction of the diamond component in the Raman spectrum for the films is established.
  • [1]
    Pomeroy J W et al 2014 Appl. Phys. Lett. 104 083513
    [2]
    Ueda K et al 2006 Diam. Relat. Mater. 15 1954
    [3]
    Conte G et al 2012 Nanotechnology 23 025201
    [4]
    Oh A 2015 J. Instrument. 10 C04038
    [5]
    Girolami M et al 2012 IEEE Electron Device Lett. 33 224
    [6]
    Thumm M 2001 Diam. Relat. Mater. 10 1692
    [7]
    Anoikin E et al 2015 Components and packaging for laser systems SPIE Proc. 9346 93460T
    [8]
    Rogalin V E et al 2012 Russ. Microelectron. 41 464
    [9]
    Peng Y H et al 2013 Opt. Lett. 38 1709
    [10]
    Dayton J A et al 2005 IEEE Trans. Electron Dev. 52 695
    [11]
    Coe S E and Sussmann R S 2000 Diam. Relat. Mater. 9 1726
    [12]
    Twitchen D et al 2001 Diam. Relat. Mater. 10 731
    [13]
    Woerner E et al 2003 Diam. Relat. Mater. 12 744
    [14]
    Graebner J E et al 1994 Phys. Rev. B 50 3702
    [15]
    Inyushkin A V et al 2008 Phys. Stat. Sol. (a) 205 2226
    [16]
    Sukhadolau A V et al 2005 Diam. Relat. Mater. 14 589
    [17]
    Bolshakov A P et al 2016 Diam. Relat. Mater. 62 49
    [18]
    Graebner J E et al 1996 Diam. Relat. Mater. 5 693
    [19]
    Anaya J et al 2016 Acta Mater. 103 141
    [20]
    Ando Y et al 2002 Diam. Relat. Mater. 11 596
    [21]
    Mallik A K et al 2014 J. Adv. Ceram. 3 56
    [22]
    King D et al 2008 Diam. Relat. Mater. 17 520
    [23]
    Füner M, Wild C and Koidl P 1999 Surf. Coat. Technol.116 853
    [24]
    Grotjohn T et al 2005 Diam. Relat. Mater. 14 288
    [25]
    Tsai H Y, Kuo K L and Chin J 2007 Soc. Mech. Eng. 28 157
    [26]
    Liang Q et al 2014 Cryst. Growth & Design 14 3234
    [27]
    Goyal V et al 2012 Adv. Funct. Mater. 22 1525
    [28]
    Mallik A K et al 2014 Process. Appl. Ceram. 8 69
    [29]
    Smolin A A et al 1993 Appl. Phys. Lett. 62 3449
    [30]
    Williams O A et al 2007 Chem. Phys. Lett. 445 255
    [31]
    Ekimov E A et al 2008 Diam. Relat. Mater. 17 838
    [32]
    Nepsha V I 1998 Handbook of Industrial Diamonds and Diamond Films ed M A Prelas et al (New York: Dekker)
    [33]
    Tamor M A and Everson M P 1994 J. Mater. Res. 9 1839
    [34]
    Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
    [35]
    Khomich A V et al 2013 J. Appl. Spectrosc. 80 707
    [36]
    Liu W L et al 2006 Appl. Phys. Lett. 89 171915
    [37]
    Bachmann P K et al 1995 Diam. Relat. Mater. 4 820
    [38]
    Ho C Y, Powell R W and Liley P E 1972 J. Phys. Chem. Ref. Data 1 279
    [39]
    Wada N and Solin S A 1981 Physica B 105 353
  • Related Articles

    [1]Jiali CHEN (陈佳丽), Peiyu JI (季佩宇), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). The properties of N-doped diamond-like carbon films prepared by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2019, 21(2): 25502-025502. DOI: 10.1088/2058-6272/aaee90
    [2]Peiyu JI (季佩宇), Jun YU (於俊), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Yan YANG (杨燕), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(2): 25505-025505. DOI: 10.1088/2058-6272/aa94bd
    [3]Hongxiu ZHOU (周红秀), Boya YUAN (袁伯雅), Jilei LYU (吕继磊), Nan JIANG (江南). A novel approach of deposition for uniform diamond films on circular saw blades[J]. Plasma Science and Technology, 2017, 19(11): 115502. DOI: 10.1088/2058-6272/aa894a
    [4]DU Tengfei (杜腾飞), PENG Xingyu (彭星宇), CHEN Zhongjing (陈忠靖), HU Zhimeng (胡志猛), GE Lijian (葛理健), HU Liqun (胡立群), ZHONG Guoqiang (钟国强), PU Neng (普能), CHEN Jinxiang (陈金象), FAN Tieshuan (樊铁栓). Time Dependent DD Neutrons Measurement Using a Single Crystal Chemical Vapor Deposition Diamond Detector on EAST[J]. Plasma Science and Technology, 2016, 18(9): 950-953. DOI: 10.1088/1009-0630/18/9/12
    [5]Hadar MANIS-LEVY, Tsachi LIVNEH, Ido ZUKERMAN, Moshe H. MINTZ, Avi RAVEH. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(10): 954-959. DOI: 10.1088/1009-0630/16/10/09
    [6]WU Maoshui(吴茂水), XU Yu(徐雨), DAI Linjun(戴林君), WANG Tiantian(王恬恬), LI Xue(李雪), WANG Dexin(王德信), GUO Ying(郭颖), DING Ke(丁可), HUANG Xiaojiang(黄晓江), SHI Jianjun(石建军), ZHANG Jing(张菁). The Gas Nucleation Process Study of Anatase TiO 2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(1): 32-36. DOI: 10.1088/1009-0630/16/1/07
    [7]XIONG Liwei (熊礼威), WANG Jianhua (汪建华), LIU Fan (刘繁), MAN Weidong (满卫东), et al. Deposition and Boron Doping of Nano-Crystalline Diamond Thin Films on Poly-crystalline Diamond Thick Films[J]. Plasma Science and Technology, 2012, 14(10): 905-908. DOI: 10.1088/1009-0630/14/10/09
    [8]PANG Jianhua (庞见华), LU Wenqi (陆文琪), XIN Yu (辛煜), WANG Hanghang (王行行), HE Jia (贺佳), XU Jun (徐军). Plasma Diagnosis for Microwave ECR Plasma Enhanced Sputtering Deposition of DLC Films[J]. Plasma Science and Technology, 2012, 14(2): 172-176. DOI: 10.1088/1009-0630/14/2/17
    [9]WENG Jun, XIONG Liwei, WANG Jianhua, MAN Weidong, CHEN Guanhu. Effect of Gas Sources on the Deposition of Nano-Crystalline Diamond Films Prepared by Microwave Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2010, 12(6): 761-764.
    [10]CHEN Mudi (陈牧笛), ZHU Xiaodong (朱晓东), KE Bo (柯博), DING Fang (丁芳), WEN Xiaohui (温晓辉), ZHOU Haiyang (周海洋). Formation of SiC Nanostruture Using Hexamethyldisiloxane During Plasma-Assisted Hot-Filament Chemical Vapor Deposition[J]. Plasma Science and Technology, 2010, 12(5): 547-550.

Catalog

    Article views (292) PDF downloads (887) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return