Citation: | Wei ZHENG, Fengming XUE, Chengshuo SHEN, Yu ZHONG, Xinkun AI, Zhongyong CHEN, Yonghua DING, Ming ZHANG, Zhoujun YANG, Nengchao WANG, Zhichao ZHANG, Jiaolong DONG, Chouyao TANG, Yuan PAN. Overview of machine learning applications in fusion plasma experiments on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124003. DOI: 10.1088/2058-6272/ac9e46 |
Machine learning research and applications in fusion plasma experiments are one of the main subjects on J-TEXT. Since 2013, various kinds of traditional machine learning, as well as deep learning methods have been applied to fusion plasma experiments. Further applications in the real-time experimental environment have proved the feasibility and effectiveness of the methods. For disruption prediction, we started by predicting disruptions of limited classes with a short warning time that could not meet the requirements of the mitigation system. After years of study, nowadays disruption prediction methods on J-TEXT are able to predict all kinds of disruptions with a high success rate and long enough warning time. Furthermore, cross-device disruption prediction methods have obtained promising results. Interpretable analysis of the models are studied. For diagnostics data processing, efforts have been made to reduce manual work in processing and to increase the robustness of the diagnostic system. Models based on both traditional machine learning and deep learning have been applied to real-time experimental environments. The models have been cooperating with the plasma control system and other systems, to make joint decisions to further support the experiments.
The authors are very grateful for the help of J-TEXT team. This work is supported by the National Key R & D Program of China (No. 2022YFE03040004) and National Natural Science Foundation of China (No. 51821005).
[1] |
Jumper J et al 2021 Nature 596 583 doi: 10.1038/s41586-021-03819-2
|
[2] |
Bhuvaneswari V et al 2021 Mater. Today Proc. 46 3263 doi: 10.1016/j.matpr.2020.11.351
|
[3] |
Baldi P, Sadowski P and Whiteson D 2014 Nat. Commun. 5 4308 doi: 10.1038/ncomms5308
|
[4] |
Hernandez J V et al 1996 Nucl. Fusion 36 1009 doi: 10.1088/0029-5515/36/8/I05
|
[5] |
Kates-Harbeck J, Svyatkovskiy A and Tang W 2019 Nature 568 526 doi: 10.1038/s41586-019-1116-4
|
[6] |
Degrave J et al 2022 Nature 602 414 doi: 10.1038/s41586-021-04301-9
|
[7] |
Mohapatra D, Subudhi B and Daniel R 2020 Fusion Eng. Des. 151 111401 doi: 10.1016/j.fusengdes.2019.111401
|
[8] |
Chang C S et al 2021 Phys. Plasmas 28 22501 doi: 10.1063/5.0027637
|
[9] |
Li H et al 2021 Plasma Sci. Technol. 23 115102 doi: 10.1088/2058-6272/ac15ec
|
[10] |
Li H et al 2022 Nucl. Fusion 62 036014 doi: 10.1088/1741-4326/ac486b
|
[11] |
Li C et al 2018 J. Instrum. 13 P10029 doi: 10.1088/1748-0221/13/10/P10029
|
[12] |
Hender T C et al 2007 Nucl. Fusion 47 S128 doi: 10.1088/0029-5515/47/6/S03
|
[13] |
ITER Physics Expert Group on Disruptions, Plasma Control and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2251 doi: 10.1088/0029-5515/39/12/303
|
[14] |
de Vries P C et al 2011 Nucl. Fusion 51 053018 doi: 10.1088/0029-5515/51/5/053018
|
[15] |
Boozer A H 2012 Phys. Plasmas 19 058101 doi: 10.1063/1.3703327
|
[16] |
Zakharov L E et al 2012 Phys. Plasmas 19 055703 doi: 10.1063/1.4705694
|
[17] |
Schuller F C 1995 Plasma Phys. Control. Fusion 37 A135 doi: 10.1088/0741-3335/37/11A/009
|
[18] |
Milani F 1998 Disruption prediction at JET PhD Thesis Aston University, Birmingham, UK
|
[19] |
Wroblewski D, Jahns G L and Leuer J A 1997 Nucl. Fusion 37 725 doi: 10.1088/0029-5515/37/6/I02
|
[20] |
Yoshino R 2003 Nucl. Fusion 43 1771 doi: 10.1088/0029-5515/43/12/021
|
[21] |
Yang Q W et al 2006 Chin. Phys. Lett. 23 891 doi: 10.1088/0256-307X/23/4/036
|
[22] |
Ding Y H et al 2013 Plasma Sci. Technol. 15 1154 doi: 10.1088/1009-0630/15/11/14
|
[23] |
Wang Z X, Tang W K and Wei L 2022 Plasma Sci. Technol. 24 033001 doi: 10.1088/2058-6272/ac4692
|
[24] |
Wang S Y et al 2016 Plasma Phys. Control. Fusion 58 055014 doi: 10.1088/0741-3335/58/5/055014
|
[25] |
Zheng W et al 2018 Nucl. Fusion 58 056016 doi: 10.1088/1741-4326/aaad17
|
[26] |
Zhang M et al 2020 Fusion Eng. Des. 160 111981 doi: 10.1016/j.fusengdes.2020.111981
|
[27] |
Zheng W et al 2020 Plasma Phys. Control. Fusion 62 045012 doi: 10.1088/1361-6587/ab6b02
|
[28] |
Zheng W et al 2022 arXiv: 2208.09594
|
[29] |
Zhong Y et al 2021 Plasma Phys. Control. Fusion 63 075008 doi: 10.1088/1361-6587/abfa74
|
[30] |
Shen C et al 2022 arXiv: 2208.13197
|
[31] |
Dong J L et al 2021 Plasma Sci. Technol. 23 085101 doi: 10.1088/2058-6272/ac0685
|
[32] |
Tang C Y et al 2022 Fusion Eng. Des. 182 113248 doi: 10.1016/j.fusengdes.2022.113248
|
[33] |
Zhang Z C et al 2022 Fusion Eng. Des. 177 113065 doi: 10.1016/j.fusengdes.2022.113065
|
[1] | Ling LI (李玲), Hailin GUO (郭海林), Junqin ZONG (宗俊勤), Jingbo CHEN (陈静波), Yi WANG (汪毅), Jianjian LI (李建建), Dandan LI (李丹丹), Hanliang SHAO (邵汉良), Jianxiu LIU (刘建秀). Influence of low-vacuum helium cold plasma pre-treatment on the rooting and root growth of zoysiagrass (Zoysia Willd.) stolon cuttings[J]. Plasma Science and Technology, 2019, 21(5): 55504-055504. DOI: 10.1088/2058-6272/aaf368 |
[2] | N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647 |
[3] | Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf |
[4] | Jinkui FENG (冯金奎), Decheng WANG (王德成), Changyong SHAO (邵长勇), Lili ZHANG (张丽丽), Xin TANG (唐欣). Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress[J]. Plasma Science and Technology, 2018, 20(3): 35505-035505. DOI: 10.1088/2058-6272/aa9b27 |
[5] | Jiamin GUO (郭佳敏), Chao YE (叶超), Xiangying WANG (王响英), Peifang YANG (杨培芳), Su ZHANG (张苏). Growth and structural properties of silicon on Ag films prepared by 40.68 MHz veryhigh-frequency magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(7): 75502-075502. DOI: 10.1088/2058-6272/aa6395 |
[6] | F. PETERS, J. HIRSCHBERG, N. MERTENS, S. WIENEKE, W. VI¨OL. Comparison of Nitric Oxide Concentrations in μs-and ns-Atmospheric Pressure Plasmas by UV Absorption Spectroscopy[J]. Plasma Science and Technology, 2016, 18(4): 406-411. DOI: 10.1088/1009-0630/18/4/13 |
[7] | Constantine L. XAPLANTERIS, Loukas C. XAPLANTERIS, Dimitris P. LEOUSIS. An Attempt to Study on the Growth and Damping Rates with Approximate Solutions by Using Mathematical Models[J]. Plasma Science and Technology, 2014, 16(10): 897-906. DOI: 10.1088/1009-0630/16/10/01 |
[8] | LIU Jinbo(刘金波), LU Ronghua(陆荣华), GUO Li(郭丽), JIN Yuqi(金玉奇), GUO Jingwei(郭敬为). Long Lifetime Ultracold Plasma Produced by a Nanosecond Laser in a Supersonic Nitric Oxide Molecular Beam Environment[J]. Plasma Science and Technology, 2014, 16(4): 305-310. DOI: 10.1088/1009-0630/16/4/01 |
[9] | TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16 |
[10] | JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12 |