Advanced Search+
Jiaqi DONG (董家齐). Kinetic micro-instabilities in the presence of impurities in toroidal magnetized plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94005-094005. DOI: 10.1088/2058-6272/aad4f4
Citation: Jiaqi DONG (董家齐). Kinetic micro-instabilities in the presence of impurities in toroidal magnetized plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94005-094005. DOI: 10.1088/2058-6272/aad4f4

Kinetic micro-instabilities in the presence of impurities in toroidal magnetized plasmas

Funds: The work is supported by National Natural Science Foundation of China (Nos. 11475057 and 11575158), and the National Key R & D Program of China under Grant No. 2017YFE0300405.
More Information
  • Received Date: April 29, 2018
  • The theoretical and numerical studies on kinetic micro-instabilities, including ion temperature gradient (ITG) driven modes, trapped electron modes (TEMs) in the presence of impurity ions as well as impurity modes (IMs), induced by impurity density gradient alone, in toroidal magnetized plasmas, such as tokamak and reversed-field pinch (RFP) are reviewed briefly. The basic theory for IMs, the electrostatic instabilities in tokamak and RFP plasmas are discussed. The observations of hybrid and coexistence of the instabilities are categorized systematically. The effects of impurity ions on electromagnetic instabilities such as ITG modes, the kinetic ballooning modes (KBMs) and kinetic shear Alfvén modes induced by impurity ions in tokamak plasmas of finite β (=plasma pressure/magnetic pressure) are analyzed. The interesting topics for future investigation are suggested.
  • [1]
    Horton W 1999 Rev. Mod. Phys. 71 735
    [2]
    Tang W M 1978 Nucl. Fusion 18 1089
    [3]
    Liewer P C 1985 Nucl. Fusion 25 543
    [4]
    Doyle E J et al 2007 Nucl. Fusion 47 S18
    [5]
    Moradi S et al 2012 Phys. Plasmas 19 032301
    [6]
    Angioni C and Peeters A G 2006 Phys. Rev. Lett. 96 095003
    [7]
    Angioni C et al 2017 Nucl. Fusion 57 056015
    [8]
    Angioni C et al 2017 Nucl. Fusion 57 022009
    [9]
    F黮鰌 T and Nordman H 2009 Phys. Plasmas 16 032306
    [10]
    Moradi S et al 2011 Plasma Phys. Control. Fusion 53 115008
    [11]
    Wade M R, Houlberg W A and Baylor L R 2000 Phys. Rev. Lett. 84 282
    [12]
    Sertoli M et al 2015 Plasma Phys. Control. Fusion 57 075004
    [13]
    Futatani S et al 2010 Phys. Rev. Lett. 104 015003
    [14]
    Sertoli M et al 2011 Plasma Phys. Control. Fusion 53 035024
    [15]
    Dong J Q, Horton W and Dorland W 1994 Phys. Plasmas 1 3635
    [16]
    Shen Y et al 2016 Plasma Phys. Control. Fusion 58 045028
    [17]
    Shen Y et al 2018 Nucl. Fusion 58 076007
    [18]
    Guo W, Wang L and Zhuang G 2016 Phys. Plasmas 23 112301
    [19]
    Guo W, Wang L and Zhuang G 2017 Nucl. Fusion 57 126052
    [20]
    Coppi B et al 1966 Phys. Rev. Lett. 17 377
    [21]
    Tang W M, White R B and Guzdar P N 1980 Phys. Fluids 23 167
    [22]
    Dominguez R R and Staebler G M 1993 Nucl. Fusion 33 51
    [23]
    Fu X Y et al 1997 Phys. Plasmas 4 588
    [24]
    Dong J Q and Horton W 1995 Phys. Plasmas 2 3412
    [25]
    Liu S F et al 2012 Europhys. Lett. 97 55004
    [26]
    Zanstorff M C et al 1990 Plasma Phys. Controlled Nucl. Fusion Research vol 1 (International Atomic Energy Agency, Vienna, 1991) p 109
    [27]
    Shen Y et al 2018 Nucl. Fusion 58 014004
    [28]
    Zhong W L et al 2016 Phys. Rev. Lett. 117 045001
    [29]
    Du H R, Wang Z X and Dong J Q 2016 Phys. Plasmas 23 072106
    [30]
    Du H R, Wang Z X and Dong J Q 2015 Phys. Plasmas 22 022506
    [31]
    Zhong S Y et al 2017 Phys. Plasmas 24 102519
    [32]
    Liu S F et al 2011 Nucl. Fusion 51 083021
    [33]
    Dong J Q, Horton W and Kim J Y 1992 Phys. Fluids B 4 1867
    [34]
    Rewoldt R and Tang W M 1990 Phys. Fluids B 2 318
    [35]
    Dong J Q, Mahajian S M and Horton W 1997 Phys. Plasmas 4 755
    [36]
    Holod I and Lin Z 2013 Phys. Plasmas 20 032309
    [37]
    Han M K 2018 private communication
    [38]
    Du H R et al 2014 Phys. Plasmas 21 052101
    [39]
    Liu S F, Guo S C and Dong J Q 2010 Phys. Plasmas 17 052505
    [40]
    Lorenzini R et al 2009 Nat. Phys. 5 570
    [41]
    Martin P et al 2011 Nucl. Fusion 51 094023
    [42]
    Puiatti M E et al 2015 Nucl. Fusion 55 104012
    [43]
    Guo S C 2008 Phys. Plasmas 15 122510
    [44]
    Dong J Q, Chen L and Zonca F 1999 Nucl Fusion 39 1041
    [45]
    Lu Gaimin et al 2013 Phys. Plasma 20 102505
    [46]
    Wang E et al 2012 Nucl. Fusion 52 103015
    [47]
    Matthews G F et al 2011 Phys. Scr. T145 014001
    [48]
    Neu R et al 2009 Phys. Scr. T138 014038
    [49]
    Clementson J, Beiersdorfer P and Lennartsson T 2013 AIP Conf. Proc. 1525 78
    [50]
    Cui Z Y et al 2013 Nucl. Fusion 53 093001
    [51]
    Zurro B et al 2014 Plasma Phys. Control Fusion 56 124007
    [52]
    Dong J Q et al 2004 Phys. Plasmas 11 997
    [53]
    Chen L, Bondeson A and Chance M S 1987 Nucl. Fusion 27 1918
    [54]
    Han M K et al 2017 Nucl. Fusion 57 046019 22
  • Related Articles

    [1]Dingchen LI, Jiawei LI, Chuan LI, Ming ZHANG, Pengyu WANG, Zhi LIU, Yong YANG, Kexun YU. Multi-point discharge model: study on corona discharge of double-ended needle in large space[J]. Plasma Science and Technology, 2023, 25(3): 035402. DOI: 10.1088/2058-6272/ac92cd
    [2]Yicen LIU, Chenguang YANG, Yujun GUO, Xueqin ZHANG, Song XIAO, Guoqiang GAO, Guangning WU. Dynamic physical characteristics of DC arc on arcing horn for HVDC grounding electrode line[J]. Plasma Science and Technology, 2023, 25(1): 015502. DOI: 10.1088/2058-6272/ac793b
    [3]Weiwei FAN (范伟伟), Bowen ZHENG (郑博文), Jing CAO (曹靖), Shibiao TANG (唐世彪), Qingwei YANG (杨青蔚), Zejie YIN (阴泽杰). Development of a fast electron bremsstrahlung diagnostic system based on LYSO and silicon photomultipliers during lower hybrid current drive for tokamak[J]. Plasma Science and Technology, 2019, 21(6): 65104-065104. DOI: 10.1088/2058-6272/ab0a77
    [4]Nureli YASEN, Chong LV (吕冲), Yajuan HOU (侯雅娟), Li WANG (王莉), Feng WAN (弯峰), Moran JIA (贾默然), Ibrahim SITIWALDI, Haibo SANG (桑海波), Mamat Ali BAKE, Baisong XIE (谢柏松). Fast electrons collimating and focusing by an ultraintense laser interacting with a high density layers[J]. Plasma Science and Technology, 2018, 20(12): 125201. DOI: 10.1088/2058-6272/aaccf2
    [5]Bo ZHANG (张波), Ying ZHU (朱颖), Feng LIU (刘峰), Zhi FANG (方志). The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 2017, 19(6): 64001-064001. DOI: 10.1088/2058-6272/aa629f
    [6]LIU Yukai (刘煜锴), GAO Li (高丽), LIU Haiqing (刘海庆), YANG Yao (杨曜), GAO Xiang (高翔), J-TEXT Team. Fast Data Processing of a Polarimeter-Interferometer System on J-TEXT[J]. Plasma Science and Technology, 2016, 18(12): 1143-1147. DOI: 10.1088/1009-0630/18/12/01
    [7]YAO Shuiliang (姚水良), WENG Shan (翁珊), JIN Qi (金旗), HAN Jingyi (韩竞一), JIANG Boqiong (江博琼), WU Zuliang (吴祖良). Equation of Energy Injection to a Dielectric Barrier Discharge Reactor[J]. Plasma Science and Technology, 2016, 18(8): 804-811. DOI: 10.1088/1009-0630/18/8/03
    [8]HUANG Haihong(黄海宏), YAN Teng(晏腾), WANG Haixin(王海欣). Application of a Current and Voltage Mixed Control Mode for the New Fast Control Power Supply at EAST[J]. Plasma Science and Technology, 2014, 16(4): 420-423. DOI: 10.1088/1009-0630/16/4/22
    [9]REN Junxue (任军学), LI Juan (李娟), XIE Kan (谢侃), TIAN Huabing (田华兵), et al.. Three Dimensional Simulation of Ion Thruster Plume-Spacecraft Interaction Based on a Graphic Processor Unit[J]. Plasma Science and Technology, 2013, 15(7): 702-709. DOI: 10.1088/1009-0630/15/7/18
    [10]ZHANG Fubin(张福斌), WANG Zhenduo(王正铎), CHEN Qiang (陈强), CAI Huiping(蔡惠平). Characterization of W Coating on Cu Substrate Prepared by Double-Glow Discharge[J]. Plasma Science and Technology, 2012, 14(1): 71-74. DOI: 10.1088/1009-0630/14/1/15

Catalog

    Article views (887) PDF downloads (447) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return