Advanced Search+
WANG Maoyan (王茂琰), ZHANG Meng (张猛), LI Guiping (李桂萍), JIANG Baojun (姜宝钧), ZHANG Xiaochuan (张小川), XU Jun (徐军). FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(8): 798-803. DOI: 10.1088/1009-0630/18/8/02
Citation: WANG Maoyan (王茂琰), ZHANG Meng (张猛), LI Guiping (李桂萍), JIANG Baojun (姜宝钧), ZHANG Xiaochuan (张小川), XU Jun (徐军). FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(8): 798-803. DOI: 10.1088/1009-0630/18/8/02

FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma

Funds: supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)
More Information
  • Received Date: July 26, 2015
  • The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed.
  • 1 Gillman E D, Foster J E, Blankson I M. 2010, Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation. Michigan, NASA/TM 2 Shi L, Guo B L, Liu Y M, et al. 2012, Prog. Electromagn. Res., 123: 321 3 Xi Y B, Liu Y. 2012, Plasma Sci. Technol., 14: 5 4 Gao D L, Novitsky A, Zhang T H, et al. 2015, Laser Photonics Rev., 9: 75 5 Zhang H F, Liu S B, Li B X. 2014, Ann. Phys., 347: 110 6 Lei C X, Wu Z S. 2010, Acta Phys. Sin., 59: 5692 7 Li H L, Wu J, Liu R Y, et al. 2007, Earth, Planets and Space, 59: 1135 8 Abrishami S A, Kadijani M N. 2014, Plasma Sci. Technol., 6: 545 9 Li H L, Wang M Y, Wu J, et al. 2010, Chinese J. Geophys., 53: 2836 10 Zhang L P, Su J Y, Li Y L. 2014, Plasma Sci. Technol., 16: 177 11 Havnes O, Tr?im J, Blix T, et al. 1996, J. Geophys. Res., 101: 10839 12 Konopka U, Ratke L, Thomas H M. 1997, Phys. Rev. Lett., 79: 1269 13 Chen Y Y, Zheng G G, Gu F, et al. 2012, Acta Phys. Sin., 61: 154202 14 Ebbinghaus S, Schrock K, Schauer J C. 2006, Plasma Sources Sci. Technol., 15: 72 15 Samsonov D, Goree J. 1999, Phys. Rev. E, 59: 1047 16 Su K, Moeller L, Barat R B, et al. 2012, J. Opt. Soc. Am. A, 29: 2360 17 Fiorino S T, Deibel J A, Grice P M, et al. 2012, Appl. Opt., 51: 3605 18 Shi Y X, Wu J, Ge D B. 2009, Acta Phys. Sin., 58: 5507 19 Wang M Y, Li H L, Zhang M, et al. 2015, Frequenz, 69: 419 20 Kolner B H, Buckles R A, Conklin P M, et al. 2008, IEEE J. Sel. Top. Quant. Electron., 14: 505 21 Jamison S P, Shen J L, Jones D R. 2003, J. Appl. Phys., 93: 4334 22 Zheng L, Zhao Q, Liu S Z, et al. 2012, Acta Phys. Sin., 61: 245202 23 Kim K Y, Yellampalle B, Glownia J H, et al. 2008, Phys. Rev. Lett., 100: 135002 24 Yuan C X, Zhou Z X, Zhang J W, et al. 2011, J. Appl. Phys., 109: 063305 25 Shukla P K, Mamun A A. 2001, Introduction to Dusty Plasma Physics. Taylor& Francis, London 26 Li L Q, Shi Y X, Wang F, et al. 2012, Acta Phys. Sin., 61: 125201 27 Laman N, Grischkowsky D. 2007, Appl. Phys. Lett., 90: 122115 28 Taove A. 1998, Advance in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston 29 Wang M Y, Li H L, Gao D L, et al. 2015, Opt. Express, 23: 16546 30 Ge D B, Wei B. 2011, Electromagnetic Wave Theory. Science Press, Beijing
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [3]Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661
    [4]Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d
    [5]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [6]LI Guozhan(李国占), CHEN Fu(陈浮), LI Linxi(李林熙), SONG Yanping(宋彦萍). Large Eddy Simulation of the E?ects of Plasma Actuation Strength on Film Cooling Efficiency[J]. Plasma Science and Technology, 2016, 18(11): 1101-1109. DOI: 10.1088/1009-0630/18/11/08
    [7]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [8]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [9]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01

Catalog

    Article views (337) PDF downloads (727) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return