Advanced Search+
WANG Maoyan (王茂琰), ZHANG Meng (张猛), LI Guiping (李桂萍), JIANG Baojun (姜宝钧), ZHANG Xiaochuan (张小川), XU Jun (徐军). FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(8): 798-803. DOI: 10.1088/1009-0630/18/8/02
Citation: WANG Maoyan (王茂琰), ZHANG Meng (张猛), LI Guiping (李桂萍), JIANG Baojun (姜宝钧), ZHANG Xiaochuan (张小川), XU Jun (徐军). FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(8): 798-803. DOI: 10.1088/1009-0630/18/8/02

FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma

Funds: supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)
More Information
  • Received Date: July 26, 2015
  • The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed.
  • 1 Gillman E D, Foster J E, Blankson I M. 2010, Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation. Michigan, NASA/TM 2 Shi L, Guo B L, Liu Y M, et al. 2012, Prog. Electromagn. Res., 123: 321 3 Xi Y B, Liu Y. 2012, Plasma Sci. Technol., 14: 5 4 Gao D L, Novitsky A, Zhang T H, et al. 2015, Laser Photonics Rev., 9: 75 5 Zhang H F, Liu S B, Li B X. 2014, Ann. Phys., 347: 110 6 Lei C X, Wu Z S. 2010, Acta Phys. Sin., 59: 5692 7 Li H L, Wu J, Liu R Y, et al. 2007, Earth, Planets and Space, 59: 1135 8 Abrishami S A, Kadijani M N. 2014, Plasma Sci. Technol., 6: 545 9 Li H L, Wang M Y, Wu J, et al. 2010, Chinese J. Geophys., 53: 2836 10 Zhang L P, Su J Y, Li Y L. 2014, Plasma Sci. Technol., 16: 177 11 Havnes O, Tr?im J, Blix T, et al. 1996, J. Geophys. Res., 101: 10839 12 Konopka U, Ratke L, Thomas H M. 1997, Phys. Rev. Lett., 79: 1269 13 Chen Y Y, Zheng G G, Gu F, et al. 2012, Acta Phys. Sin., 61: 154202 14 Ebbinghaus S, Schrock K, Schauer J C. 2006, Plasma Sources Sci. Technol., 15: 72 15 Samsonov D, Goree J. 1999, Phys. Rev. E, 59: 1047 16 Su K, Moeller L, Barat R B, et al. 2012, J. Opt. Soc. Am. A, 29: 2360 17 Fiorino S T, Deibel J A, Grice P M, et al. 2012, Appl. Opt., 51: 3605 18 Shi Y X, Wu J, Ge D B. 2009, Acta Phys. Sin., 58: 5507 19 Wang M Y, Li H L, Zhang M, et al. 2015, Frequenz, 69: 419 20 Kolner B H, Buckles R A, Conklin P M, et al. 2008, IEEE J. Sel. Top. Quant. Electron., 14: 505 21 Jamison S P, Shen J L, Jones D R. 2003, J. Appl. Phys., 93: 4334 22 Zheng L, Zhao Q, Liu S Z, et al. 2012, Acta Phys. Sin., 61: 245202 23 Kim K Y, Yellampalle B, Glownia J H, et al. 2008, Phys. Rev. Lett., 100: 135002 24 Yuan C X, Zhou Z X, Zhang J W, et al. 2011, J. Appl. Phys., 109: 063305 25 Shukla P K, Mamun A A. 2001, Introduction to Dusty Plasma Physics. Taylor& Francis, London 26 Li L Q, Shi Y X, Wang F, et al. 2012, Acta Phys. Sin., 61: 125201 27 Laman N, Grischkowsky D. 2007, Appl. Phys. Lett., 90: 122115 28 Taove A. 1998, Advance in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston 29 Wang M Y, Li H L, Gao D L, et al. 2015, Opt. Express, 23: 16546 30 Ge D B, Wei B. 2011, Electromagnetic Wave Theory. Science Press, Beijing
  • Related Articles

    [1]Shaoshuai GUO (郭韶帅), Kai XIE (谢楷), Bin SUN (孙斌), Shaowei LIU (刘少伟). Mitigation of blackout problem for reentry vehicle in traveling magnetic field with induced current[J]. Plasma Science and Technology, 2020, 22(12): 125301. DOI: 10.1088/2058-6272/abb455
    [2]Dongao LI (李东澳), Liping ZHANG (张丽萍), Hongmei DU (杜洪梅). The instability of terahertz plasma waves in cylindrical FET[J]. Plasma Science and Technology, 2019, 21(4): 45002-045002. DOI: 10.1088/2058-6272/aaf874
    [3]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [4]A ABBASI, M R RASHIDIAN VAZIRI. Effect of polarization force on the Jeans instability in collisional dusty plasmas[J]. Plasma Science and Technology, 2018, 20(3): 35301-035301. DOI: 10.1088/2058-6272/aa96fa
    [5]G C DAS. Some studies on transient behaviours of sheath formation in dusty plasma with the effect of adiabatically heated electrons and ions[J]. Plasma Science and Technology, 2017, 19(9): 95002-095002. DOI: 10.1088/2058-6272/aa750c
    [6]Yunhai HONG (洪运海), Chengxun YUAN (袁承勋), Jieshu JIA (贾洁姝), Ruilin GAO (高瑞林), Ying WANG (王莹), Zhongxiang ZHOU (周忠祥), Xiaoou WANG (王晓鸥), Hui LI (李辉), Jian WU (吴建). Propagation characteristics of microwaves in dusty plasmas with multi-collisions[J]. Plasma Science and Technology, 2017, 19(5): 55301-055301. DOI: 10.1088/2058-6272/aa5b29
    [7]ZHOU Shengguo (周圣国), LI Hailong (李海龙), FU Luyao (符路遥), WANG Maoyan (王茂琰). Preliminary Study on Active Modulation of Polar Mesosphere Summer Echoes with the Radio Propagation in Layered Space Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(6): 607-610. DOI: 10.1088/1009-0630/18/6/05
    [8]ZHANG Liping (张丽萍). The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas[J]. Plasma Science and Technology, 2016, 18(4): 360-363. DOI: 10.1088/1009-0630/18/4/05
    [9]ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01
    [10]XI Yanbin (奚衍斌), LIU Yue (刘悦). FDTD Simulation on Power Absorption of Terahertz Electromagnetic Waves in Dense Plasma[J]. Plasma Science and Technology, 2012, 14(1): 5-8. DOI: 10.1088/1009-0630/14/1/02

Catalog

    Article views (337) PDF downloads (727) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return