Advanced Search+
ZHANG Pengfei(张鹏飞), ZHANG Guogang(张国钢), DONG Jinlong(董金龙), LIU Wanying(刘婉莹), GENG Yingsan(耿英三). Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs[J]. Plasma Science and Technology, 2014, 16(7): 661-668. DOI: 10.1088/1009-0630/16/7/06
Citation: ZHANG Pengfei(张鹏飞), ZHANG Guogang(张国钢), DONG Jinlong(董金龙), LIU Wanying(刘婉莹), GENG Yingsan(耿英三). Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs[J]. Plasma Science and Technology, 2014, 16(7): 661-668. DOI: 10.1088/1009-0630/16/7/06

Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs

Funds: supported by the Fundamental Research Funds for the Central Universities of China (XJJ2011019)
More Information
  • Received Date: August 05, 2013
  • In current investigations of electric arc plasmas, experiments based on modern test- ing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non- intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visual- ization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc.
  • 1.Freton P, Gonzalez J J. 2009, The Open Physics Journal, 2: 105
    2 Mutzke A, Ruther T, Lindmayer M, et al. 2010, Eur.Phys. J. Appl. Phys., 49: 22910
    3 Wu Y, Rong M, Sun Z, et al. 2007, Plasma Science and Technology, 9: 649
    4 Sekikawa J, Kubono T. 2004, IEEE Trans. Electron., E87-C(8): 1342
    5 Lindmayer M, Paulke J. 1998, Manuf. Tech., 21: 33
    6 McBride J W, Balestrero A, Ghezzi L. 2010, Rev. Sci. Instrum., 81: 055109
    7 Li X, Chen D, Liu H, et al. 2007, Plasma Science and Technology, 9: 657
    8 Hong D, Sandolache G, Bauchire J. 2005, IEEE Trans. Plasma Sci., 33: 976
    9 Hu H, Chen W, Zhang J, et al. 2012, Plasma Science and Technology, 14: 257
    10 Takeuchim M, Kubono T. 1999, IEEE Trans. Elec-tron., E82-C(1): 41
    11 Toumazet J P, Brdys, Laurent A, et al. 2008, IEEE Trans. Plasma Sci., 36: 1036
    12 Toumazet J P, Brdys C, Laurent A, et al. 2005, IEEE Trans. Meas. Sci. Technol., 16: 1525
    13 Brdys C, Toumazet J P, Velleaud G, et al. 1999, IEEE Trans. Plasma Sci., 27: 595
    14 Cajal D, Laurrent A, Gary F, et al. 1999, Appl. Phys., 32: 1130
    15 Brdys C, Toumazet J P, Laurent A, et al. 2002, Meas. Sci. Tech., 13: 1146
    16 Kabanikhin S I. 2008, Journal of Inverse and Ill-posed Problems, 16: 317
    17 Lnadi G. 2008, Computational Optimization and Ap-plications, 39: 347
    18 Deng Y, Zeng Z, Tamburrino A, et al. 2007, Inter-national Journal of Applied Electromagnetic and Me-chanics, 25: 357
    19 Agalidi Y, Kozhukhar P, Levyi S, et al. 2012, Nonde-strutive Testing and Evaluation, 27: 109
    20 Lin Z W, Zhu J, Cochrane J W. 2004, IEEE Transac-tions on Applied Superconductivity, 14: 1959
    21 Jooss C, Albrecht J, Kuhn H, et al. 2002, Rep. Prog. Phys., 65: 651
    22 Wijngaarden R J, Griessen T, Fendrich J, et al. 1997, Phys. Tev. B, Condens. Matter, 55: 3268
    23 Zeng Z, Liu X, Deng Y, et al. 2006, IEEE Transactions on Magnetics, 42: 3737
    24 Drouet M G, Beaudet R, Jutras R. 1975, AIAA Jour-nal, 13: 929
    25.Xu T J, Rong M Z, Wu Y, et al. 2009, IEEE Trans. Plasma Sci., 37: 1311
  • Related Articles

    [1]Yuanxiang ZHOU (周远翔), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵), Yunxiao ZHANG (张云霄), Yajun MO (莫雅俊), Jiantao SUN (孙建涛). Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage[J]. Plasma Science and Technology, 2018, 20(5): 54016-054016. DOI: 10.1088/2058-6272/aaa479
    [2]Qiyun CHENG (程启耘), Yi YU (余羿), Shaobo GONG (龚少博), Min XU (许敏), Tao LAN (兰涛), Wei JIANG (蒋蔚), Boda YUAN (袁博达), Yifan WU (吴一帆), Lin NIE (聂林), Rui KE (柯锐), Ting LONG (龙婷), Dong GUO (郭栋), Minyou YE (叶民友), Xuru DUAN (段旭如). Optical path design of phase contrast imaging on HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125601. DOI: 10.1088/2058-6272/aa8d64
    [3]Jianqiang HU (胡健强), Ahdi LIU (刘阿娣), Chu ZHOU (周楚), Xiaohui ZHANG (张小辉), Mingyuan WANG (王明远), Jin ZHANG (张津), Xi FENG (冯喜), Hong LI (李弘), Jinlin XIE (谢锦林), Wandong LIU (刘万东), Changxuan YU (俞昌旋). An accurate automated technique for quasi-optics measurement of the microwave diagnostics for fusion plasma[J]. Plasma Science and Technology, 2017, 19(8): 84002-084002. DOI: 10.1088/2058-6272/aa6794
    [4]Min JIANG (蒋敏), Zhongbing SHI (石中兵), Yilun ZHU (朱逸伦). Optimization of the optical system for electron cyclotron emission imaging diagnostics on the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(8): 84001-084001. DOI: 10.1088/2058-6272/aa62f7
    [5]Yuanji CAI (蔡元纪), Yonggang GUAN (关永刚), Weidong LIU (刘卫东). Statistical characteristics of transient enclosure voltage in ultra-high-voltage gas-insulated switchgear[J]. Plasma Science and Technology, 2017, 19(6): 64011-064011. DOI: 10.1088/2058-6272/aa65c7
    [6]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 490-493. DOI: 10.1088/1009-0630/18/5/08
    [7]ZHU Yilun (朱逸伦), ZHAO Zhenling (赵朕领), TONG Li (仝丽), CHEN Dongxu (陈东旭), XIE Jinlin (谢锦林), LIU Wandong (刘万东). Optics System Design of Microwave Imaging Reflectometry for the EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(4): 449-452. DOI: 10.1088/1009-0630/18/4/20
    [8]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation[J]. Plasma Science and Technology, 2016, 18(3): 319-324. DOI: 10.1088/1009-0630/18/3/17
    [9]B. DEBALINA, M. KAMARAJ, S. R. CHAKRAVARTHI, N. J. VASA, R. SARATHI. Understanding the Mechanism of Nanoparticle Formation in a Wire Explosion Process by Adopting the Optical Emission Technique[J]. Plasma Science and Technology, 2013, 15(6): 562-569. DOI: 10.1088/1009-0630/15/6/14
    [10]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20

Catalog

    Article views (355) PDF downloads (920) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return