Advanced Search+
LIU Xiaoliang(刘小亮), CAO Yu(曹瑜), WANG Xiaoshan(王小山), LIU Zuoye(刘作业), GUO Zeqin(郭泽钦), SHI Yanchao(史彦超), SUN Shaohua(孙少华), LI Yuhong(李玉红), HU Bitao(胡碧涛). Optical Emission Spectroscopy Analysis of the Early Phase During Femtosecond Laser-Induced Air Breakdown[J]. Plasma Science and Technology, 2014, 16(9): 815-820. DOI: 10.1088/1009-0630/16/9/02
Citation: LIU Xiaoliang(刘小亮), CAO Yu(曹瑜), WANG Xiaoshan(王小山), LIU Zuoye(刘作业), GUO Zeqin(郭泽钦), SHI Yanchao(史彦超), SUN Shaohua(孙少华), LI Yuhong(李玉红), HU Bitao(胡碧涛). Optical Emission Spectroscopy Analysis of the Early Phase During Femtosecond Laser-Induced Air Breakdown[J]. Plasma Science and Technology, 2014, 16(9): 815-820. DOI: 10.1088/1009-0630/16/9/02

Optical Emission Spectroscopy Analysis of the Early Phase During Femtosecond Laser-Induced Air Breakdown

Funds: supported by National Natural Science Foundation of China (Nos. 11135002, 11075069, 91026021 and 11075068) and the Scholarship Award for Excellent Doctoral Student Granted by the Ministry of Education of China
More Information
  • Received Date: August 04, 2013
  • Single-pulse and double-pulse optical emission spectroscopy (OES) analyses were carried out in air by using ultrashort laser pulses at atmospheric pressure. The aim of this work is to use spectroscopic methods to analyze the early phase of laser-induced plasma after the femtosecond laser pulse. The temporal behavior of emission spectra of air plasma has been characterized. In comparison with the single-pulse scheme, the plasma emission obtained in the double-pulse scheme presents a more intense continuum along with several additional ionic lines. As only one line is available in the single-pulse scheme, the plasma temperature measurements were performed using only the relative line-to-continuum intensity ratio method, whereas the relative line-to-line intensity ratio method and the relative line-to-continuum intensity ratio method were used simultaneously to estimate the electron temperature in the double-pulse scheme. The results reveal that the temperature values obtained by the two methods in the double-pulse scheme agree. Moreover, this shows that the relative line-to-continuum intensity ratio method is suitable for early phase of laser-induced plasma diagnostics. The electron number density was estimated using the Stark broadening method. In the early phase of laser-induced plasma, the temporal evolution of the electron number density exhibits a power law decrease with delay time.
  • 1 Strickland D, Mourou G. 1985, Opt. Commun., 56:219
    2 Margetic V, Pakulev A, Stockhaus A, et al. 2000, Spectrochim. Acta Part B, 55: 1771
    3 Drogoff B L, Vidal F, Kaenel Y V, et al. 2001, J. Appl.Phys., 89: 8247
    4 Chikov B N, Momma C, Nolte S, et al. 1996, Appl.Phys. A, 63: 109
    5 Semerok A, Chal ard C, Detalle V, et al. 1999, Appl.Surf. Sci., 138/139: 311
    6 Adrain R S. 1984, J. Phys. D: Appl. Phys., 17: 1915
    7 Sun S H, Liu X L, Liu Z Y, et al. 2013, Chin. Phys.Lett., 30: 045202
    8 Nakamura S, Wagatsuma K. 2007, Spectrochim. Acta Part B, 62: 1303
    9 Piñnon V, Fotakis C, Nicolas G, et al. 2008, Spectrochim. Acta Part B, 63: 1006
    10 Mateo M P, Piñnon V, Anglos D, et al. 2012, Spectrochim. Acta Part B, 74-75: 18
    11 Liu H C, Mao X L, Yoo J H, et al. 1999, Spectrochim.Acta Part B, 54: 1607
    12 Zeng X Z, Mao S S, Liu C Y, et al. 2003, Spectrochim.Acta Part B, 58: 867
    13 Giacomo A D, Dell'Aglio M, Santagata A, et al. 2005,Spectrochim. Acta Part B, 60: 935
    14 Liu X L, Sun S H,Wang X S, et al. 2013, Opt. Express,21: A704
    15 Drogoff B L, Margot J, Chaker M, et al. 2001, Spectrochim. Acta Part B, 56: 987
    16 Ying M J, Xia Y Y, Sun Y M, et al. 2003, Laser and Particle Beams, 21: 97
    17 Delcroix A, Volonte S. 1973, J. Phys. B: Molec. Phys.,6: L4
    18 Bastiaans G J, Mangold R A. 1985, Spectrochim.Acta., 40B: 885
    19 Camacho J J, Diaz L, Santos M, et al. 2010, J. Appl.Phys., 107: 083306
    20 Spitzer L. 1962, Physics of Fully Ionized Gases. Interscience, New York
    21 Griem H R. 1974, Spectral Line Broadening by Plasmas. Academic Press, New York
    22 NIST Atomic Spectra Database online at http://www.physics. nist.gov/PhysRefData/ASD/index.html. 2008
    23 Befeki G. 1976, Principles of Laser Plasmas. Wiley Interscience, New York
    24 Griem H R. 1997, Principles of Plasma Spectroscopy. Cambridge University Press, United Kingdom
    25 Wolf P J. 1992, J. Appl. Phys., 72: 1280
    26 Hunddelestone R H, Leonard S L. 1965, Plasma Diagnostic Techniques. Academic Press, London
  • Related Articles

    [1]Qilin SHI, Hao WU, Zhao YUAN, Zhe TAO, Guixia LI, Wei LUO, Wei JIANG. The influence of weak transverse magnetic field on plasma dissipation process in the post-arc phase in a vacuum interrupter[J]. Plasma Science and Technology, 2022, 24(5): 055501. DOI: 10.1088/2058-6272/ac4fb3
    [2]Ziang TONG (佟子昂), Jianwen WU (武建文), Wei JIN (金巍), Jun CHEN (陈均). Properties of intermediate-frequency vacuum arc in sinusoidal curved contact and butt contact[J]. Plasma Science and Technology, 2020, 22(2): 24004-024004. DOI: 10.1088/2058-6272/ab5b19
    [3]Liying ZHU (朱立颖), Zhigang LIU (刘治钢), Xiaofeng ZHANG (张晓峰), Chao WANG (王超), Xiaofei LI (李小飞), Bingxin ZHAO (赵冰欣). Study on volt-ampere characteristics of solar array arcs in LEO spacecraft[J]. Plasma Science and Technology, 2019, 21(2): 25302-025302. DOI: 10.1088/2058-6272/aaf18a
    [4]Fangyuan LIU (刘方圆), Deping YU (余德平), Cheng LV (吕程), Yazhou DUAN (段亚洲), Yanjie ZHONG (钟严杰), Jin YAO (姚进). Experimental study on the jet characteristics of a steam plasma torch[J]. Plasma Science and Technology, 2018, 20(12): 125401. DOI: 10.1088/2058-6272/aad9f1
    [5]Xianhai PANG (庞先海), Zixi LIU (刘紫熹), Shixin XIU (修士新), Dingyu FENG (冯顶瑜). Arc characteristics during the instability stage on transverse magnetic field contacts[J]. Plasma Science and Technology, 2018, 20(9): 95505-095505. DOI: 10.1088/2058-6272/aac50a
    [6]Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782
    [7]JIANG Yuan (蒋原), WU Jianwen (武建文). Interruption Phenomenon in Intermediate-Frequency Vacuum Arc[J]. Plasma Science and Technology, 2016, 18(3): 311-318. DOI: 10.1088/1009-0630/18/3/16
    [8]ZHU Liying(朱立颖), WU Jianwen(武建文), JIANG Yuan(蒋原). Motion and Splitting of Vacuum Arc Column in Transverse Magnetic Field Contacts at Intermediate-Frequency[J]. Plasma Science and Technology, 2014, 16(5): 454-459. DOI: 10.1088/1009-0630/16/5/03
    [9]LI Hui (李辉), XIE Mingfeng(谢铭丰). Measurement of Plasma Parameters of Gliding Arc Driven by the Transverse Magnetic Field[J]. Plasma Science and Technology, 2012, 14(8): 712-715. DOI: 10.1088/1009-0630/14/8/06
    [10]WANG Lijun (王立军), YANG Dingge (杨鼎革), JIA Shenli (贾申利), WANG Liuhuo (王流火), SHI Zongqian (史宗谦). Vacuum Arc Characteristics Simulation at Different Moments Under Power-Frequency Current[J]. Plasma Science and Technology, 2012, 14(3): 227-234. DOI: 10.1088/1009-0630/14/3/08

Catalog

    Article views (170) PDF downloads (1048) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return