Advanced Search+
LIU Xiaoliang(刘小亮), CAO Yu(曹瑜), WANG Xiaoshan(王小山), LIU Zuoye(刘作业), GUO Zeqin(郭泽钦), SHI Yanchao(史彦超), SUN Shaohua(孙少华), LI Yuhong(李玉红), HU Bitao(胡碧涛). Optical Emission Spectroscopy Analysis of the Early Phase During Femtosecond Laser-Induced Air Breakdown[J]. Plasma Science and Technology, 2014, 16(9): 815-820. DOI: 10.1088/1009-0630/16/9/02
Citation: LIU Xiaoliang(刘小亮), CAO Yu(曹瑜), WANG Xiaoshan(王小山), LIU Zuoye(刘作业), GUO Zeqin(郭泽钦), SHI Yanchao(史彦超), SUN Shaohua(孙少华), LI Yuhong(李玉红), HU Bitao(胡碧涛). Optical Emission Spectroscopy Analysis of the Early Phase During Femtosecond Laser-Induced Air Breakdown[J]. Plasma Science and Technology, 2014, 16(9): 815-820. DOI: 10.1088/1009-0630/16/9/02

Optical Emission Spectroscopy Analysis of the Early Phase During Femtosecond Laser-Induced Air Breakdown

Funds: supported by National Natural Science Foundation of China (Nos. 11135002, 11075069, 91026021 and 11075068) and the Scholarship Award for Excellent Doctoral Student Granted by the Ministry of Education of China
More Information
  • Received Date: August 04, 2013
  • Single-pulse and double-pulse optical emission spectroscopy (OES) analyses were carried out in air by using ultrashort laser pulses at atmospheric pressure. The aim of this work is to use spectroscopic methods to analyze the early phase of laser-induced plasma after the femtosecond laser pulse. The temporal behavior of emission spectra of air plasma has been characterized. In comparison with the single-pulse scheme, the plasma emission obtained in the double-pulse scheme presents a more intense continuum along with several additional ionic lines. As only one line is available in the single-pulse scheme, the plasma temperature measurements were performed using only the relative line-to-continuum intensity ratio method, whereas the relative line-to-line intensity ratio method and the relative line-to-continuum intensity ratio method were used simultaneously to estimate the electron temperature in the double-pulse scheme. The results reveal that the temperature values obtained by the two methods in the double-pulse scheme agree. Moreover, this shows that the relative line-to-continuum intensity ratio method is suitable for early phase of laser-induced plasma diagnostics. The electron number density was estimated using the Stark broadening method. In the early phase of laser-induced plasma, the temporal evolution of the electron number density exhibits a power law decrease with delay time.
  • 1 Strickland D, Mourou G. 1985, Opt. Commun., 56:219
    2 Margetic V, Pakulev A, Stockhaus A, et al. 2000, Spectrochim. Acta Part B, 55: 1771
    3 Drogoff B L, Vidal F, Kaenel Y V, et al. 2001, J. Appl.Phys., 89: 8247
    4 Chikov B N, Momma C, Nolte S, et al. 1996, Appl.Phys. A, 63: 109
    5 Semerok A, Chal ard C, Detalle V, et al. 1999, Appl.Surf. Sci., 138/139: 311
    6 Adrain R S. 1984, J. Phys. D: Appl. Phys., 17: 1915
    7 Sun S H, Liu X L, Liu Z Y, et al. 2013, Chin. Phys.Lett., 30: 045202
    8 Nakamura S, Wagatsuma K. 2007, Spectrochim. Acta Part B, 62: 1303
    9 Piñnon V, Fotakis C, Nicolas G, et al. 2008, Spectrochim. Acta Part B, 63: 1006
    10 Mateo M P, Piñnon V, Anglos D, et al. 2012, Spectrochim. Acta Part B, 74-75: 18
    11 Liu H C, Mao X L, Yoo J H, et al. 1999, Spectrochim.Acta Part B, 54: 1607
    12 Zeng X Z, Mao S S, Liu C Y, et al. 2003, Spectrochim.Acta Part B, 58: 867
    13 Giacomo A D, Dell'Aglio M, Santagata A, et al. 2005,Spectrochim. Acta Part B, 60: 935
    14 Liu X L, Sun S H,Wang X S, et al. 2013, Opt. Express,21: A704
    15 Drogoff B L, Margot J, Chaker M, et al. 2001, Spectrochim. Acta Part B, 56: 987
    16 Ying M J, Xia Y Y, Sun Y M, et al. 2003, Laser and Particle Beams, 21: 97
    17 Delcroix A, Volonte S. 1973, J. Phys. B: Molec. Phys.,6: L4
    18 Bastiaans G J, Mangold R A. 1985, Spectrochim.Acta., 40B: 885
    19 Camacho J J, Diaz L, Santos M, et al. 2010, J. Appl.Phys., 107: 083306
    20 Spitzer L. 1962, Physics of Fully Ionized Gases. Interscience, New York
    21 Griem H R. 1974, Spectral Line Broadening by Plasmas. Academic Press, New York
    22 NIST Atomic Spectra Database online at http://www.physics. nist.gov/PhysRefData/ASD/index.html. 2008
    23 Befeki G. 1976, Principles of Laser Plasmas. Wiley Interscience, New York
    24 Griem H R. 1997, Principles of Plasma Spectroscopy. Cambridge University Press, United Kingdom
    25 Wolf P J. 1992, J. Appl. Phys., 72: 1280
    26 Hunddelestone R H, Leonard S L. 1965, Plasma Diagnostic Techniques. Academic Press, London
  • Related Articles

    [1]Heng LAN (兰恒), Guosheng XU (徐国盛), Kevin TRITZ, Ning YAN (颜宁), Tonghui SHI (石同辉), Yongliang LI (李永亮), Tengfei WANG (王腾飞), Liang WANG (王亮), Jingbo CHEN (陈竞博), Yanmin DUAN (段艳敏), Yi YUAN (原毅), Youwen SUN (孙有文), Shuai GU (顾帅), Qing ZANG (臧庆), Ran CHEN (陈冉), Liang CHEN (陈良), Xingwei ZHENG (郑星炜), Shuliang CHEN (陈树亮), HuanLIU (刘欢), YangYE (叶扬), Huiqian WANG (汪惠乾), Baonian WAN (万宝年), the EAST Team. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125101. DOI: 10.1088/2058-6272/aa8cbf
    [2]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [3]Jun WU (吴军), Jian WU (吴健), Haisheng ZHAO (赵海生), Zhengwen XU (许正文). Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency[J]. Plasma Science and Technology, 2017, 19(4): 45301-045301. DOI: 10.1088/2058-6272/aa58db
    [4]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [5]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [6]WU Jun (吴军), WU Jian (吴健), XU Zhengwen (许正文). Results of Ionospheric Heating Experiments Involving an Enhancement in Electron Density in the High Latitude Ionosphere[J]. Plasma Science and Technology, 2016, 18(9): 890-896. DOI: 10.1088/1009-0630/18/9/03
    [7]NIU Zhiwen (牛志文), WEN Xiaoqiong (温小琼), REN Chunsheng (任春生), QIU Yuliang (邱玉良). Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water[J]. Plasma Science and Technology, 2016, 18(8): 821-825. DOI: 10.1088/1009-0630/18/8/05
    [8]CHEN Juanjuan (陈娟娟), ZHANG Tianping (张天平), GENG Hai (耿海), JIA Yanhui (贾艳辉), MENG Wei (孟伟), WU Xianming (吴先明), SUN Anbang (孙安邦). Analysis of Numerical Simulation Results of LIPS-200 Lifetime Experiments[J]. Plasma Science and Technology, 2016, 18(6): 611-616. DOI: 10.1088/1009-0630/18/6/06
    [9]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [10]WEN Xueqing (闻雪晴), XIN Yu (信裕), FENG Chunlei (冯春雷), DING Hongbin (丁洪斌). Electron Energy and the Effective Electron Temperature of Nanosecond Pulsed Argon Plasma Studied by Global Simulations Combined with Optical Emission Spectroscopic Measurements[J]. Plasma Science and Technology, 2012, 14(1): 40-47. DOI: 10.1088/1009-0630/14/1/10

Catalog

    Article views (170) PDF downloads (1048) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return