Citation: | Qilin SHI, Hao WU, Zhao YUAN, Zhe TAO, Guixia LI, Wei LUO, Wei JIANG. The influence of weak transverse magnetic field on plasma dissipation process in the post-arc phase in a vacuum interrupter[J]. Plasma Science and Technology, 2022, 24(5): 055501. DOI: 10.1088/2058-6272/ac4fb3 |
Transverse magnetic field (TMF) contacts and applying external TMF are often adopted for reducing the ablation of the contact surface, but TMF will also affect the breaking performance of the vacuum interrupters. In this work, we investigated the influence of weak TMF on the expansion of the plasma in the post-arc phase with one-dimensional implicit particle-in-cell/Monte Carlo collision model, and we added an external circuit to the model to ensure the correctness of the calculation results. We simulated multiple magnetic field strengths (< 30 mT), compared the plasma expansion process with the TMF strengths of 0 mT and 10 mT, and discussed the influence of metal vapor density on the insulation performance recovery of the vacuum interrupter. From the results, applying TMF with strength below 5 mT has little effect on the expansion of the plasma, and the TMF can increase the plasma density which improve the flow capacity of vacuum circuit breakers when the magnetic field above 10 mT, which is because the particles become more difficult to leave the discharge area under the force of the magnetic field. In general, we find that weak external TMF may adversely affect the breaking performance of the vacuum circuit breakers.
This work was supported by National Natural Science Foundation of China (Nos. 11775090, 51807069 and U1766211).
[1] |
Liu Z Y et al 2007 IEEE Trans. Plasma Sci. 35 856 doi: 10.1109/TPS.2007.896929
|
[2] |
Yuan Z et al 2016 Rev. Sci. Instrum. 87 125103 doi: 10.1063/1.4968578
|
[3] |
Slade P G 2008 The Vacuum Interrupter: Theory, Design, and Application (Boca Raton, FL: CRC Press)
|
[4] |
Li X P et al 2017 2017 4th Int. Conf. on Electric Power Equipment-Switching Technology (ICEPE-ST) (Xi'an, China, 2017) (IEEE) p 389
|
[5] |
Yanabu S et al 1986 IEEE Trans. Power Deliv. 1 202 doi: 10.1109/TPWRD.1986.4308049
|
[6] |
Wang L et al 2005 J. Phys. D: Appl. Phys. 38 1034 doi: 10.1088/0022-3727/38/7/011
|
[7] |
Yang W, Sun Q and Zhou Q H 2020 J. Appl. Phys. 128 060905 doi: 10.1063/5.0014485
|
[8] |
Wang Z X et al 2016 J. Appl. Phys. 120 083301 doi: 10.1063/1.4961420
|
[9] |
Wang Z X et al 2015 IEEE Trans. Plasma Sci. 43 3734 doi: 10.1109/TPS.2015.2467158
|
[10] |
Mo Y P et al 2016 Phys. Plasmas 23 053506 doi: 10.1063/1.4948422
|
[11] |
Mo Y P et al 2015 Phys. Plasmas 22 023511 doi: 10.1063/1.4913677
|
[12] |
Wang D et al 2020 Phys. Plasmas 27 013501 doi: 10.1063/1.5123272
|
[13] |
Wang D et al 2019 J. Phys. D: Appl. Phys. 53 035201 doi: 10.1088/1361-6463/ab4c63
|
[14] |
Shmelev D L and Delachaux T 2010 24th ISDEIV 2010 (Braunschweig, Germany) (IEEE) p 399
|
[15] |
Shmelev D L 2012 2012 25th Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV) (Tomsk, Russia) (IEEE) p 353
|
[16] |
Shmelev D L 2013 IEEE Trans. Plasma Sci. 41 1969 doi: 10.1109/TPS.2013.2244918
|
[17] |
Zhang X et al 2017 J. Phys. D: Appl. Phys. 50 455203 doi: 10.1088/1361-6463/aa8db3
|
[18] |
Zhang X et al 2018 J. Phys. D: Appl. Phys. 52 035204 doi: 10.1088/1361-6463/aaeac0
|
[19] |
Ma H et al 2016 Phys. Plasmas 23 093507 doi: 10.1063/1.4962678
|
[20] |
Ma H et al 2016 Phys. Plasmas 23 063517 doi: 10.1063/1.4954301
|
[21] |
Liu L M et al 2020 Phys. Plasmas 27 063507 doi: 10.1063/5.0006028
|
[22] |
Liu L et al 2020 IEEE Trans. Plasma Sci. 48 4289 doi: 10.1109/TPS.2020.3037913
|
[23] |
Smeets R P P and van der Linden W A 2003 IEEE Trans. Plasma Sci. 31 852 doi: 10.1109/TPS.2003.818438
|
[24] |
Smeets R P P et al 2008 2008 23rd Int. Symp. on Discharges and Electrical Insulation in Vacuum (Bucharest, Romania) (IEEE) p 79
|
[25] |
Holmes R and Yanabu S 1973 J. Phys. D: Appl. Phys. 6 1217 doi: 10.1088/0022-3727/6/10/306
|
[26] |
Schade E 2005 IEEE Trans. Plasma Sci. 33 1564 doi: 10.1109/TPS.2005.856530
|
[27] |
Boxman R L, Sanders D M and Martin P J 1996 Handbook of Vacuum Arc Science & Technology: Fundamentals and Applications (New Jersey: Noyes)
|
[28] |
Trajmar S, Williams W and Srivastava S K 1977 J. Phys. B: At. Mol. Phys. 10 3323 doi: 10.1088/0022-3700/10/16/025
|
[29] |
Yang W et al 2018 Phys. Plasmas 25 063521 doi: 10.1063/1.5032276
|
[30] |
Criffin D C and Pindzola M S 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4347 doi: 10.1088/0953-4075/28/19/019
|
[31] |
Horváth B et al 2017 Plasma Sources Sci. Technol. 26 124001 doi: 10.1088/1361-6595/aa963d
|
[32] |
Verboncoeur J P et al 1993 J. Comput. Phys. 104 321 doi: 10.1006/jcph.1993.1034
|
[33] |
Georgieva V 2006 PhD Thesis Universiteit Antwerpen, Belgium
|
[34] |
Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231 doi: 10.1088/0741-3335/47/5A/017
|
[35] |
Nanbu K, Mitsui K and Kondo S 2000 J. Phys. D: Appl. Phys. 33 2274 doi: 10.1088/0022-3727/33/18/311
|
[36] |
Jiang W et al 2011 Plasma Sources Sci. Technol. 20 035013 doi: 10.1088/0963-0252/20/3/035013
|
[37] |
Yang S L et al 2017 Plasma Sources Sci. Technol. 26 065011 doi: 10.1088/1361-6595/aa6ef1
|
[38] |
Yang S L et al 2018 Plasma Sources Sci. Technol. 27 035008 doi: 10.1088/1361-6595/aab47e
|
[39] |
Tskhakaya D et al 2007 Contrib. Plasma Phys. 47 563 doi: 10.1002/ctpp.200710072
|
[40] |
Wang H Y et al 2015 Chin. Phys. B 24 065207 doi: 10.1088/1674-1056/24/6/065207
|
[41] |
Wang H R et al 2016 2016 27th Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV) (Suzhou, China, 2016) (IEEE) p 1
|
[42] |
Yang S L et al 2017 Plasma Process. Polym. 14 1700087 doi: 10.1002/ppap.201700087
|
[43] |
Guowei G et al 2018 Trans. China Electr. Soc. 33 111 (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.171592
|
[1] | R MILLS, J LOTOSKI, Y LU. Mechanism of soft x-ray continuum radiation from low-energy pinch discharges of hydrogen and ultra-low field ignition of solid fuels[J]. Plasma Science and Technology, 2017, 19(9): 95001-095001. DOI: 10.1088/2058-6272/aa7383 |
[2] | JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15 |
[3] | DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04 |
[4] | XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), XIAO Rui (肖锐), et al.. A Simulation Study on the Flash X-Ray Spectra Spatial Distribution[J]. Plasma Science and Technology, 2013, 15(11): 1165-1168. DOI: 10.1088/1009-0630/15/11/16 |
[5] | CHEN Zhaoxi (陈肇玺), HU Liqun (胡立群), CHENG Yong (程勇), LEI Mingzhun (雷明准), et al.. The Design and Test of a Be Window for the ITER Radial X-Ray Camera[J]. Plasma Science and Technology, 2013, 15(11): 1160-1164. DOI: 10.1088/1009-0630/15/11/15 |
[6] | SONG Tianming (宋天明), YANG Jiamin (杨家敏), YANG Dong (杨冬), et al.. Experimental Study of the X-Ray Radiation Source at Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2013, 15(11): 1108-1111. DOI: 10.1088/1009-0630/15/11/06 |
[7] | SUN Jiang (孙江), SUN Jianfeng (孙剑锋), YANG Hailiang (杨海亮), ZHANG Pengfei (张鹏飞), et al.. Plasma Density Influence on the Properties of a Plasma Filled Rod Pinch Diode[J]. Plasma Science and Technology, 2013, 15(9): 904-907. DOI: 10.1088/1009-0630/15/9/14 |
[8] | ZHANG Xiaoding (张小丁), ZHANG Jiyan (张继彦), YANG Guohong (杨国洪), et al.. A High-Efficiency X-Ray Crystal Spectrometer for X-Ray Thomson Scattering[J]. Plasma Science and Technology, 2013, 15(8): 755-759. DOI: 10.1088/1009-0630/15/8/07 |
[9] | HU Guangyue (胡广月), ZHANG Xiaoding (张小丁), ZHENG Jian (郑坚), LEI An-le (雷安乐), SHEN Baifei (沈百飞), XU Zhizhan, et al. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility[J]. Plasma Science and Technology, 2012, 14(10): 864-870. DOI: 10.1088/1009-0630/14/10/02 |
[10] | Alexander I. Pushkarev, Yulia I. Isakova. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode[J]. Plasma Science and Technology, 2011, 13(6): 698-701. |