Advanced Search+
R MILLS, J LOTOSKI, Y LU. Mechanism of soft x-ray continuum radiation from low-energy pinch discharges of hydrogen and ultra-low field ignition of solid fuels[J]. Plasma Science and Technology, 2017, 19(9): 95001-095001. DOI: 10.1088/2058-6272/aa7383
Citation: R MILLS, J LOTOSKI, Y LU. Mechanism of soft x-ray continuum radiation from low-energy pinch discharges of hydrogen and ultra-low field ignition of solid fuels[J]. Plasma Science and Technology, 2017, 19(9): 95001-095001. DOI: 10.1088/2058-6272/aa7383

Mechanism of soft x-ray continuum radiation from low-energy pinch discharges of hydrogen and ultra-low field ignition of solid fuels

More Information
  • Received Date: January 31, 2017
  • EUV continuum radiation (10–30 nm) arising only from very low energy pulsed pinch gas discharges comprising some hydrogen was first observed at BlackLight Power, Inc. and reproduced at the Harvard Center for Astrophysics (CfA). The source was determined to be due to the transition of H to the lower-energy hydrogen or hydrino state H(1/4) whose emission matches that observed wherein alternative sources were eliminated. The identity of the catalyst that accepts 3• 27.2 eV from the H to causethe H to H(1/4) transition was determined to HOH versus 3H. The mechanism was elucidated using different oxide-coated electrodes that were selective in forming HOH versus plasma forming metal atoms as well as from the intensity profile that was a mismatch for the multi-body reaction required during 3H catalysis. The HOH catalyst was further shown to give EUV radiation of the same nature by igniting a solid fuel comprising a source of H and HOH catalyst by passing a low voltage, high current through the fuel to produce explosive plasma. No chemical reaction can release such high-energy light. No high field existed to form highly ionized ions that could give radiation in this EUV region that persisted even without power input. This plasma source serves as strong evidence for the existence of the transition of H to hydrino H(1/4) by HOH as the catalyst and a corresponding new power source wherein initial extraordinarily brilliant light-emitting prototypes are already producing photovoltaic generated electrical power. The hydrino product of a catalyst reaction of atomic hydrogen was analyzed by multiple spectroscopic techniques. Moreover, the mH catalyst was identified to be active in astronomical sources such as the Sun, stars and interstellar medium wherein the characteristics of hydrino match those of the dark matter of the Universe.
  • [1]
    Mills R L 2016 The Grand Uni?ed Theory of Classical Physics (Lancaster, PA : Cenveo)(http://brilliantlightpower.com/ book-download-and-streaming/)
    [2]
    Mills R L and Lu Y 2010 Int. J. Hydrog. Energy 35 8446
    [3]
    Mills R L, Lu Y and Akhtar K 2010 Cent. Eur. J. Phys. 8 318
    [4]
    Mills R L and Lu Y 2011 Eur. Phys. J. D 64 65
    [5]
    Mills R L, Booker R and Lu Y 2013 J. Plasma Phys. 79 489
    [6]
    Bykanov A 2012 Validation of the observation of soft x-ray continuum radiation from low-energy pinch discharges in the presence of molecular hydrogen PhD Thesis Harvard Smithsonian Center for Astrophysics Cambridge, MA
    [7]
    Mills R and Lotoski J 2015 Int. J. Hydrog. Energy 40 25
    [8]
    Akhtar K, Scharer J E and Mills R L 2009 J. Phys. D: Appl. Phys. 42 135207
    [9]
    Mills R L and Akhtar K 2009 Int. J. Hydrog. Energy 34 6465
    [10]
    Mills R L, Dhandapani B and Akhtar K 2008 Int. J. Hydrog. Energy 33 802
    [11]
    Mills R, Ray P and Dhandapani B 2006 J. Plasma Phys. 72 469
    [12]
    Phillips J et al 2007 Int. J. Hydrog. Energy 32 3010
    [13]
    Mills R L et al 2005 J. Plasma Phys. 71 877
    [14]
    Mills R L and Akhtar K 2010 Int. J. Hydrog. Energy 35 2546
    [15]
    Kuraica M and Konjevi? N 1992 Phys. Rev. A 46 4429
    [16]
    Kuraica M et al 1992 Spectrochim. Acta B 47 1173
    [17]
    Videnovi? I R, Konjevi? N and Kuraica M M 1996 Spectrochim. Acta B 51 1707
    [18]
    Alexiou S and Leboucher-Dalimier E 1999 Phys. Rev. E 60 3436
    [19]
    Djurovi? S and Roberts J R 1993 J. Appl. Phys. 74 6558
    [20]
    Radovanov S B et al 1995 Appl. Phys. Lett. 66 2637
    [21]
    Radovanov S B et al 1995 J. Appl. Phys. 78 746
    [22]
    Baravian G et al 1987 J. Appl. Phys. 61 5249
    [23]
    Phelps A V 1992 J. Phys. Chem. Ref. Data 21 883
    [24]
    Barbeau C and Jolly J 1990 J. Phys. D: Appl. Phys. 23 1168
    [25]
    Bzenic S A et al 1991 Chem. Phys. Lett. 184 108
    [26]
    Ayers E L and Benesch W 1988 Phys. Rev. A 37 194
    [27]
    Benesch W and Li E 1984 Opt. Lett. 9 338
    [28]
    Mills R 2015 Power generation systems and methods regarding same New Jersey Blacklight Power, Inc. WO/2015/ 075566
    [29]
    Van Gessel A F H 2009 EUV spectroscopy of hydrogen plasmas MSc Thesis Eindhoven University of Technology, Eindhoven, Netherlands pp 61–70
    [30]
    Mills R L et al 2014 Int. J. Energy Res. 38 1741
    [31]
    Mills R et al 2014 Int. J. Hydrog. Energy 39 11930
    [32]
    Mills R et al 2014 Int. J. Hydrog. Energy 39 14512
    [33]
    Awe T J et al 2010 Phys. Plasmas 17 102507
    [34]
    Clementson J 2012 Interpretation of EBIT Data-the Case of Tungsten DE-AC52-07NA27344 USA, Lawrence Livermore National Laboratory slide 7
    [35]
    Tr?bert E 2002 Can. J. Phys. 80 1481
    [36]
    Phelps A V and Clemetson J 2012 Eur. Phys. J. D 66 120
    [37]
    Ngo H D Pressure measurement in combustion engines http:// mat.ee.tu-berlin.de/research/sic_sens/sic_sen3.htm
    [38]
    Simpson R 1999 Unraveling the mystery of detonation https:// llnl.gov/str/Simpson99.html
    [39]
    Meyer R, K?hler J and Homburg A 2007 Explosives 6th edn (Weinheim: Wiley)p 119
    [40]
    van der Horst R M et al 2012 J. Phys. D: Appl. Phys. 45 345201
    [41]
    Gigosos M A, González M á and Carde?oso V 2003 Spectrochim. Acta B 58 1489
    [42]
    Fridman A and Kennedy L A 2011 Plasma Physics and Engineering 2nd edn (Boca Raton, FL, New York: CRC Press, Taylor and Francis)
    [43]
    Beiser A 1978 Concepts of Modern Physics 4th edn (New York: McGraw-Hill)pp 329–40
    [44]
    Masnavi M et al 2005 Appl. Phys. Lett. 87 111502
    [45]
    Pan J Q et al 2005 Electrochem. Commun. 7 857
    [46]
    Lide D R 2007 CRC Handbook of Chemistry and Physics 88th ed (Boca Raton, FL, London: CRC Press, Taylor and Francis)
    [47]
    Dean J A 1999 Lange’s Handbook of Chemistry 15th edn (New York: McGraw-Hill)
    [48]
    Knacke O, Kubaschewski O and Hesselmann K 1991 Thermochemical Properties of Inorganic Substances 2nd edn (Berlin: Springer)
    [49]
    Kinney G F and Graham K J 1985 Explosive Shocks in Air 2nd edn (Berlin: Springer)
    [50]
    Barstow M A and Holberg J B 2003 Extreme Ultraviolet Astronomy (Cambridge: Cambridge University Press)ch 1
    [51]
    Barstow M A and Holberg J B 2003 Extreme Ultraviolet Astronomy (Cambridge: Cambridge University Press)ch 8
    [52]
    Mills R L 2001 Int. J. Hydrog. Energy 26 1041
    [53]
    Stix M 1991 The Sun (Berlin: Springer)p 321
    [54]
    Phillips K J H 1992 Guide to the Sun (Cambridge: Cambridge University Press)pp 126–7
    [55]
    Stix M 1991 The Sun (Berlin: Springer)pp 351–6
    [56]
    Nobel Prize
    [57]
    Craig N et al 1997 Astrophys. J. Suppl. Ser. 113 131
    [58]
    Reeves E M, Huber E C M and Timothy G J 1977 Appl. Opt. 16 837
    [59]
    Labov S E and Bowyer S 1991 Astrophys. J. 371 810
    [60]
    Bower C S, Field G B and Mack J E 1968 Nature 217 32
  • Related Articles

    [1]Yuyang PAN, Jianyu FENG, Caixia LI, Lifang DONG. Formation of honeycomb-Kagome hexagonal superlattice pattern with dark discharges in dielectric barrier discharge[J]. Plasma Science and Technology, 2022, 24(11): 115401. DOI: 10.1088/2058-6272/ac7c62
    [2]Yunxi SHI (施蕴曦), Yixi CAI (蔡忆昔), Xiaohua LI (李小华), Xiaoyu PU (濮晓宇), Nan ZHAO (赵楠), Weikai WANG (王为凯). Effect of the amount of trapped particulate matter on diesel particulate filter regeneration performance using nonthermal plasma assisted by exhaust waste heat[J]. Plasma Science and Technology, 2020, 22(1): 15504-015504. DOI: 10.1088/2058-6272/ab4d3c
    [3]Zhuang LI (李壮), Xiuling ZHANG (张秀玲), Yuzhuo ZHANG (张玉卓), Dongzhi DUAN (段栋之), Lanbo DI (底兰波). Hydrogen cold plasma for synthesizing Pd/C catalysts: the effect of support–metal ion interaction[J]. Plasma Science and Technology, 2018, 20(1): 14016-014016. DOI: 10.1088/2058-6272/aa7f27
    [4]Hailin ZHAO (赵海林), Tao LAN (兰涛), Adi LIU (刘阿娣), Defeng KONG (孔德峰), Huagang SHEN (沈华刚), Jie WU (吴捷), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Wei ZHANG (张炜), Guosheng XU (徐国盛), Baonian WAN (万宝年). Zonal flow energy ratio evolution during L-H and H-L transitions in EAST plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35101-035101. DOI: 10.1088/2058-6272/19/3/035101
    [5]Manping LI (李曼苹), Kai WU (吴锴), Zhao ZHANG (张钊), Yonghong CHENG (成永红). Effect of toughened epoxy resin on partial discharge at solid–solid interface[J]. Plasma Science and Technology, 2017, 19(2): 25401-025401. DOI: 10.1088/2058-6272/19/2/025401
    [6]WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
    [7]CHEN Jun (陈军), HUANG Jianjun (黄建军), LI Xinjun (李信军), LIU Ying (刘英), et al.. Plasma-Sprayed Coating of an Apatite-Type Lanthanum Silicate Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)[J]. Plasma Science and Technology, 2013, 15(7): 673-676. DOI: 10.1088/1009-0630/15/7/13
    [8]Heinrich HORA, George H. MILEY, HE Xiantu, ZHENG Wudi, Paraskevas LALOUSIS, Istvan F?OLDES, Sandor SZATMARI, Stavros MOUSTAIZIS, Reynaldo CASTILLO. Ultrahigh Acceleration of Plasma Blocks by Nonlinear Forces for Side-On Laser Ignition of Solid Density Fusion Fuel[J]. Plasma Science and Technology, 2013, 15(5): 420-424. DOI: 10.1088/1009-0630/15/5/05
    [9]SHEN Hong (申虹), WANG Yannan (王延楠). Phases of Dense Matter in Supernovae and Neutron Stars[J]. Plasma Science and Technology, 2012, 14(7): 581-584. DOI: 10.1088/1009-0630/14/7/03
    [10]SHU Song(舒崧), LI Jiarong (李家荣). A Mean-Field Treatment in Studying Nuclear Matter Through a Thermodynamic Consistent Resummation Scheme[J]. Plasma Science and Technology, 2012, 14(5): 379-382. DOI: 10.1088/1009-0630/14/5/07

Catalog

    Article views (325) PDF downloads (849) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return