Advanced Search+
WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
Citation: WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08

Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (Nos.2011GB108011 and 2010GB103001) and the Major International (Regional) Project Cooperation and Exchanges (No.11320101005)
More Information
  • Received Date: June 26, 2013
  • H α (Balmer-alpha), H β (Balmer-beta) and H γ (Balmer-gamma) spectral line inten- sities in atomic hydrogen plasma are investigated by using a high-power RF source. The intensities of the H α, H β and H γ spectral lines are detected by increasing the input power (0-6 kW) of ICPs (inductively coupled plasmas). With the increase of net input power, the intensity of H α im- proves rapidly (0-2 kW), and then reaches its dynamic equilibrium; the intensities of H β can be divided into three processes: obvious increase (0-2 kW), rapid increase (2-4 kW), almost constant (4-6 kW); while the intensities of H γ increase very slowly. The energy levels of the excited hydro- gen atoms and the splitting energy levels produced by an obvious Stark effect play an important role in the results.
  • 1 Fantz U. 2004, Contrib. Plasma Phys., 44: 508;
    2 Johnson L C, Hinnov E J. 1973, J. Quant. Spectrosc.Radiat. Transfer, 13: 333;
    3 Drawin H W, Emard F. 1976, Physica B+C, 85: 333;
    4 Zikié R, Gignos M A, Ivkovié M, et al. 2002, Spec-trochim. Acta B, 57: 987;
    5 Gignos M A, González Má, Cardenoso V. 2003, Spec-trochim. Acta B, 58: 1489;
    6 Chen C K, Wei T, Collins L R, et al. 1999, J. Phys.D: Appl. Phys., 32: 688;
    7 Satoru Tanaka, Bingjia Xiao, Kobayashi Kazuki, et al.2000, Plasma Phys. Control. Fusion, 42: 1091;
    8 Fantz U, Heger B. 1998, Plasma Phys. Control. Fusion,40: 2023;
    9 Qiu D R. 2002, Atomic Spectra Analysis. Fudan Uni-versity Press, Shanghai, p.43 (in Chinese) ;
    10 Xin R X. 2011, Plasma Emission Spectra Analysis (The second edition). Chemical Industry Press, Bei-jing, p.122 (in Chinese) ;
    11 Qiu D R. 2002, Atomic Spectra Analysis, Fudan Uni-versity Press, Shanghai, p.36 (in Chinese) ;
    12 Zhang Changxin, Dec. 2005, Journal of Anhui Normal University (Natural Science), 28: 408 (in Chinese) ;
    13 Behringe K R, Fantz U. 2000, New J. Phys., 2: 1;
    14 Lieberman M A and Lichtenberg A J. 2005, Principles of Plasma Discharges and Materials Processing. John Wiley & Sons, Inc., Hoboken, New Jersey
  • Related Articles

    [1]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [2]Jia FU (符佳), Bo LYU (吕波), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Dongmei LIU (刘冬梅), Yongqing WEI (魏永清), Chao FAN (范超), Yuejiang SHI (石跃江), Zhenwei WU (吴振伟), Baonian WAN (万宝年). Development of signal analysis method for the motional Stark effect diagnostic on EAST[J]. Plasma Science and Technology, 2017, 19(10): 104001. DOI: 10.1088/2058-6272/aa7941
    [3]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [4]Hailin ZHAO (赵海林), Tao LAN (兰涛), Adi LIU (刘阿娣), Defeng KONG (孔德峰), Huagang SHEN (沈华刚), Jie WU (吴捷), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Wei ZHANG (张炜), Guosheng XU (徐国盛), Baonian WAN (万宝年). Zonal flow energy ratio evolution during L-H and H-L transitions in EAST plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35101-035101. DOI: 10.1088/2058-6272/19/3/035101
    [5]Guosheng XU (徐国盛), Xingquan WU (伍兴权). Understanding L–H transition in tokamak fusion plasmas[J]. Plasma Science and Technology, 2017, 19(3): 33001-033001. DOI: 10.1088/2058-6272/19/3/033001
    [6]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [7]WU Guojiang(吴国将), ZHANG Xiaodong(张晓东). Analysis of the Variability of the L-H Transition Power Threshold in a Helium-4 Discharge[J]. Plasma Science and Technology, 2014, 16(6): 557-561. DOI: 10.1088/1009-0630/16/6/03
    [8]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [9]FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01
    [10]WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591.

Catalog

    Article views (264) PDF downloads (1267) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return