Advanced Search+
ZHU Dehua (朱德华), CAO Yu (曹宇), ZHONG Rong (钟蓉), CHEN Xiaojing (陈孝敬). Quantitative Analysis of Composition Change in AZ31 Magnesium Alloy Using CF-LIBS After Laser Material Processing[J]. Plasma Science and Technology, 2015, 17(11): 909-913. DOI: 10.1088/1009-0630/17/11/03
Citation: ZHU Dehua (朱德华), CAO Yu (曹宇), ZHONG Rong (钟蓉), CHEN Xiaojing (陈孝敬). Quantitative Analysis of Composition Change in AZ31 Magnesium Alloy Using CF-LIBS After Laser Material Processing[J]. Plasma Science and Technology, 2015, 17(11): 909-913. DOI: 10.1088/1009-0630/17/11/03

Quantitative Analysis of Composition Change in AZ31 Magnesium Alloy Using CF-LIBS After Laser Material Processing

Funds: supported by National Natural Science Foundation of China (Nos. 61405147, 51375348) and the Scientific Research Fund of Zhejiang Provincial Education Department, China (No. Y201430387)
More Information
  • Received Date: March 22, 2015
  • The concentration of elements in molten metal of AZ31 magnesium alloy after long pulsed Nd:YAG laser processing was quantitatively analyzed by using calibration-free laser-induced breakdown spectroscopy (CF-LIBS). The composition change in AZ31 magnesium alloy under different laser pulse width was also investigated. The experimental results showed that CF-LIBS can obtain satisfactory quantitative or semi-quantitative results for matrix or major elements, while only qualitative analysis was possible for minor or trace elements. Moreover, it is found that the chemical composition of molten metal will change after laser processing. The concentration of magnesium in molten metal is lower than that present in the base metal. The Mg loss increases with an increase of pulse width in the laser processing. This result shows that the selective vaporization of di?erent elements is a?ected by the pulse width during laser processing.
  • 1 Jandaghi M, Parvin P, Torkamany M J, et al. 2008,Journal of Physics D: Applied Physics, 41: 235503 2 Dilthey U, Goumeniouk A, Lopota V, et al. 2001, Journal of Physics D: Applied Physics, 34: 81 3 Zhao H, Debroy T. 2001, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 32: 163 4 He X, DebRoy T, Fuerschbach P W. 2004, Journal of Applied Physics, 96: 4547 5 Jandaghi M, Parvin P, Torkamany M J, et al. 2009,Journal of Physics D: Applied Physics, 42: 205301 6 Wang Z, Yuan T B, Hou Z Y, et al. 2014, Frontiers of Physics, 9: 419 7 Yu J, Zheng R. 2012, Frontiers of Physics, 7: 647 8 Zhang L, Hu Z Y, Yin W B, et al. 2012, Frontiers of Physics, 7: 690 9 Dong F Z, Chen X L, Wang Q, et al. 2012, Frontiers of Physics, 7: 679 10 Herrera K K, Tognoni E, Omenetto N, et al. 2009,Journal of Analytical Atomic Spectrometry, 24: 413 11 Xu M, Lin Q, Yang G, et al. 2015, Rsc. Advances, 5: 4537 12 Shirvani-Mahdavi H, Shoursheini S Z, Gholami H,et al. 2014, Applied Physics B: Lasers and Optics, 117:823 13 Aguilera J A, Arag´ on C, Cristoforetti G, et al. 2009,Spectrochimica Acta Part B: Atomic Spectroscopy, 64:685 14 Kolmhofer P J, Eschlboeck-Fuchs S, Huber N, et al.2015, Spectrochimica Acta Part B: Atomic Spectroscopy, 106: 67 15 Gaudiuso R, Dell’Aglio M, De Pascale O, et al. 2014,Analytica Chimica Acta, 813: 15 16 Ciucci A, Corsi M, Palleschi V, et al. 1999, Applied Spectroscopy, 53: 960 17 Tognoni E, Cristoforetti G, Legnaloli S, et al. 2007, Spectrochimica Acta Part B: Atomic Spectroscopy, 62:1287 18 Sirven J B, Mauchien P, Sall´ e B. 2008, Spectrochimica Acta Part B: Atomic Spectroscopy, 63: 1077 19 Singh J P, Thakur S N. 2007, Laser-Induced Breakdown Spectroscopy. Elsevier Amsterdam, Netherlands 20 McWhirter R W P. 1965, Plasma Diagnostic Techniques (Pure and Applied Physics). Academic Press,New York, USA 21 NIST Database,http://www.nist.gov/pml/data/handbook/index.cfm

Catalog

    Article views (323) PDF downloads (908) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return