Advanced Search+
LI Xiongwei (李雄威), WANG Zhe (王哲), FU Yangting (傅杨挺), LI Zheng (李政), NI Weidou (倪维斗). Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 621-624. DOI: 10.1088/1009-0630/17/8/02
Citation: LI Xiongwei (李雄威), WANG Zhe (王哲), FU Yangting (傅杨挺), LI Zheng (李政), NI Weidou (倪维斗). Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 621-624. DOI: 10.1088/1009-0630/17/8/02

Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy

Funds: supported by National Natural Science Foundation of China (No. 51276100) and National Basic Research Program of China (973 Program) (No. 2013CB228501)
More Information
  • Received Date: December 06, 2014
  • The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method.
  • 1 Yuan T B, Wang Z, Lui S L, et al. 2013, J. Anal. At.Spectrom., 28: 1045
    2 Wang Z, Yuan T B, Lui S L, et al. 2012, Front. Phys.,7: 708
    3 Ctvrtnickova T, Mateo M P, Yanez A, et al. 2011,Appl. Surf. Sci., 257: 5447
    4 Hahn D W, Omenetto N. 2012, Appl. Spectrosc., 66:347
    5 Cremers D A, Chinni R C. 2009, Appl. Spectrosc.Rev., 44: 457
    6 Wang Z, Yuan T B, Hou Z Y, et al. 2014, Front. Phys.,9: 419
    7 Yuan T B, Wang Z, Li Z, et al. 2014, Anal. Chim.Acta, 807: 29
    8 Li X W, Wang Z, Fu Y T, et al. 2014, Appl. Spectrosc.,68: 955
    9 Yuan T B, Wang Z, Li Z, et al. 2012, Appl. Opt., 51:22
    10 Feng J, Wang Z, West L, et al. 2011, Anal. Bioanal.Chem., 400: 3261
    11 Li J, Lu J D, Lin Z X, et al. 2009, Optics & Laser Technology, 41: 907
    12 Ma Q L, Motto-Ros V, Lei W Q, et al. 2010, Spectrochim. Acta B, 65: 896
    13 Castle B C, Talabardon K, Smith B W, et al. 1998,Appl. Spectrosc., 52: 649
    14 Yu J, Ma Q L, Motto-Ros V, et al. 2012, Front. Phys.,7: 649
    15 Shaikh N M, Kalhoro M S, Hussain A, et al. 2013,Spectrochim. Acta B, 88: 198
    16 Barnett C, Cahoon E, Almirall J R, et al. 2008, Spectrochim. Acta B, 63: 1016
    17 Cahoon E M, Almirall J R. 2010, Appl. Opt., 49: 49
    18 Ma Q L, Motto-Ros V, Laye F, et al. 2012, Appl. Phys.,111: 053301
    19 Babushok V I, Delucia F C, Gottfried J L, et al. 2006,Spectrochim. Acta B, 61: 999
    20 Zhou W D, Su X J, Qian H G, et al. 2013, J. Anal.At. Spectrom., 28: 702
  • Related Articles

    [1]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [2]Jia FU (符佳), Bo LYU (吕波), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Dongmei LIU (刘冬梅), Yongqing WEI (魏永清), Chao FAN (范超), Yuejiang SHI (石跃江), Zhenwei WU (吴振伟), Baonian WAN (万宝年). Development of signal analysis method for the motional Stark effect diagnostic on EAST[J]. Plasma Science and Technology, 2017, 19(10): 104001. DOI: 10.1088/2058-6272/aa7941
    [3]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [4]Hailin ZHAO (赵海林), Tao LAN (兰涛), Adi LIU (刘阿娣), Defeng KONG (孔德峰), Huagang SHEN (沈华刚), Jie WU (吴捷), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Wei ZHANG (张炜), Guosheng XU (徐国盛), Baonian WAN (万宝年). Zonal flow energy ratio evolution during L-H and H-L transitions in EAST plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35101-035101. DOI: 10.1088/2058-6272/19/3/035101
    [5]Guosheng XU (徐国盛), Xingquan WU (伍兴权). Understanding L–H transition in tokamak fusion plasmas[J]. Plasma Science and Technology, 2017, 19(3): 33001-033001. DOI: 10.1088/2058-6272/19/3/033001
    [6]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [7]WU Guojiang(吴国将), ZHANG Xiaodong(张晓东). Analysis of the Variability of the L-H Transition Power Threshold in a Helium-4 Discharge[J]. Plasma Science and Technology, 2014, 16(6): 557-561. DOI: 10.1088/1009-0630/16/6/03
    [8]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [9]FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01
    [10]WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591.

Catalog

    Article views (376) PDF downloads (2106) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return