Advanced Search+
LI Xiongwei (李雄威), WANG Zhe (王哲), FU Yangting (傅杨挺), LI Zheng (李政), NI Weidou (倪维斗). Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 621-624. DOI: 10.1088/1009-0630/17/8/02
Citation: LI Xiongwei (李雄威), WANG Zhe (王哲), FU Yangting (傅杨挺), LI Zheng (李政), NI Weidou (倪维斗). Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 621-624. DOI: 10.1088/1009-0630/17/8/02

Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy

Funds: supported by National Natural Science Foundation of China (No. 51276100) and National Basic Research Program of China (973 Program) (No. 2013CB228501)
More Information
  • Received Date: December 06, 2014
  • The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method.
  • 1 Yuan T B, Wang Z, Lui S L, et al. 2013, J. Anal. At.Spectrom., 28: 1045
    2 Wang Z, Yuan T B, Lui S L, et al. 2012, Front. Phys.,7: 708
    3 Ctvrtnickova T, Mateo M P, Yanez A, et al. 2011,Appl. Surf. Sci., 257: 5447
    4 Hahn D W, Omenetto N. 2012, Appl. Spectrosc., 66:347
    5 Cremers D A, Chinni R C. 2009, Appl. Spectrosc.Rev., 44: 457
    6 Wang Z, Yuan T B, Hou Z Y, et al. 2014, Front. Phys.,9: 419
    7 Yuan T B, Wang Z, Li Z, et al. 2014, Anal. Chim.Acta, 807: 29
    8 Li X W, Wang Z, Fu Y T, et al. 2014, Appl. Spectrosc.,68: 955
    9 Yuan T B, Wang Z, Li Z, et al. 2012, Appl. Opt., 51:22
    10 Feng J, Wang Z, West L, et al. 2011, Anal. Bioanal.Chem., 400: 3261
    11 Li J, Lu J D, Lin Z X, et al. 2009, Optics & Laser Technology, 41: 907
    12 Ma Q L, Motto-Ros V, Lei W Q, et al. 2010, Spectrochim. Acta B, 65: 896
    13 Castle B C, Talabardon K, Smith B W, et al. 1998,Appl. Spectrosc., 52: 649
    14 Yu J, Ma Q L, Motto-Ros V, et al. 2012, Front. Phys.,7: 649
    15 Shaikh N M, Kalhoro M S, Hussain A, et al. 2013,Spectrochim. Acta B, 88: 198
    16 Barnett C, Cahoon E, Almirall J R, et al. 2008, Spectrochim. Acta B, 63: 1016
    17 Cahoon E M, Almirall J R. 2010, Appl. Opt., 49: 49
    18 Ma Q L, Motto-Ros V, Laye F, et al. 2012, Appl. Phys.,111: 053301
    19 Babushok V I, Delucia F C, Gottfried J L, et al. 2006,Spectrochim. Acta B, 61: 999
    20 Zhou W D, Su X J, Qian H G, et al. 2013, J. Anal.At. Spectrom., 28: 702
  • Related Articles

    [1]Wenjun YANG (杨文军), Guoqiang LI (李国强), Yanqiang HU (胡砚强), Songlin LIU (刘松林), Hang LI (李航), Xiang GAO (高翔). Effects of kinetic profiles on neutron wall loading distribution in CFETR[J]. Plasma Science and Technology, 2017, 19(8): 85102-085102. DOI: 10.1088/2058-6272/aa6795
    [2]YUAN Guoliang(袁国梁), YANG Qingwei(杨青巍), YANG Jinwei(杨进蔚), SONG Xianying(宋先瑛), LI Xu(李旭), WU Huajian(吴华剑), WANG Zhiqiang(王志强). Fusion Neutron Flux Detector for the ITER[J]. Plasma Science and Technology, 2014, 16(2): 168-171. DOI: 10.1088/1009-0630/16/2/14
    [3]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), YUAN Guoliang (袁国梁), YANG Qingwei (杨青巍), YIN Zejie (阴泽杰). The Neutron-Gamma Pulse Shape Discrimination Method for Neutron Flux Detection in the ITER[J]. Plasma Science and Technology, 2013, 15(5): 417-419. DOI: 10.1088/1009-0630/15/5/04
    [4]SONG Yushou(宋玉收), YAN Qiang(颜强), JING Tian(井田), XI Yinyin(席印印), LIU Huilan(刘辉兰). The Distortion of Energy Deposit Distribution of 12C Ions in Water[J]. Plasma Science and Technology, 2012, 14(7): 665-669. DOI: 10.1088/1009-0630/14/7/22
    [5]HE Chao(何超), HUA Hui(华辉), LI Xiangqing(李湘庆), WANG Bo(汪波). β-Decay of Light Neutron-Rich Nuclei[J]. Plasma Science and Technology, 2012, 14(7): 610-613. DOI: 10.1088/1009-0630/14/7/10
    [6]LI Shuang(李双), FENG Shengqin (冯笙琴). Gluon Saturation Model with Geometric Scaling for Net-Baryon Distributions in Relativistic Heavy Ion Collisions[J]. Plasma Science and Technology, 2012, 14(7): 598-602. DOI: 10.1088/1009-0630/14/7/07
    [7]XIAO Jun (肖军), YE Yanlin (叶沿林), You Haibo(游海波), YANG Zaihong (杨再宏), CAO Zhongxin(曹中鑫), JIANG Dongxing(江栋兴), ZHENG Tao(郑涛), HUA hui(华辉), Li Zhihuan(李智焕), GE Yucheng(葛俞成), et al. The Experimental Study of Two-Neutron Correlation in 8He+[J]. Plasma Science and Technology, 2012, 14(6): 539-542. DOI: 10.1088/1009-0630/14/6/24
    [8]You Haibo(游海波)), Song Yushou(宋玉收)), Xiao Jun(肖军)), Ye Yanlin(叶沿林)). Study of Neutron Cross Talk Rejection Based on Testing Experiment and Simulation[J]. Plasma Science and Technology, 2012, 14(6): 473-477. DOI: 10.1088/1009-0630/14/6/08
    [9]LI Xiangqing(李湘庆), HUA Hui(华辉), JIANG Dongxing(江栋兴), YE Yanlin(叶沿林). Study of Isotopic Distribution of the Projectile-like Fragments Produced in the 17,18N + 197Au Reactions at 33MeV/u[J]. Plasma Science and Technology, 2012, 14(6): 455-459. DOI: 10.1088/1009-0630/14/6/04
    [10]XU Yan (许妍), LIU Guangzhou(刘广洲), WU Yaorui(吴姚睿), ZHU Mingfeng(朱明枫), YU Zi(喻孜), WANG Hongyan(王红岩), ZHAO Enguang(赵恩广). The Effects of δ Meson on the Neutron Star Cooling[J]. Plasma Science and Technology, 2012, 14(5): 375-378. DOI: 10.1088/1009-0630/14/5/06
  • Cited by

    Periodical cited type(9)

    1. Yu, X., Su, X., Wang, Z. et al. A review of uranium (U) elemental detection methods. Analytical Methods, 2025. DOI:10.1039/d4ay02115k
    2. Skutnik, S.E., Sobel, P.W., Swinney, M.W. et al. Survey of prospective techniques for molten salt reactor feed monitoring. Annals of Nuclear Energy, 2024. DOI:10.1016/j.anucene.2024.110796
    3. Lee, Y., Foster, R.I., Kim, H. et al. Data Fusion of Acoustic and Optical Emission from Laser-Induced Plasma for In Situ Measurement of Rare Earth Elements in Molten LiCl-KCl. Analytical Chemistry, 2024, 96(28): 11255-11262. DOI:10.1021/acs.analchem.4c00897
    4. Qobatiah, S., Gunawati, Mitaphonna, R., Idris, N. Detection of uranium content in salt traditionally produced in Lam Ujong farm of Aceh besar region using laser induced breakdown spectroscopy (LIBS). AIP Conference Proceedings, 2024, 3082(1): 040019. DOI:10.1063/5.0201082
    5. Liu, X., Ren, S., Zhang, M. et al. Comparison of nanosecond and femtosecond laser-induced breakdown spectroscopy for determination of U and Th in tantalum-niobium ores. Journal of Analytical Atomic Spectrometry, 2024. DOI:10.1039/d4ja00268g
    6. Long, J., Song, W., Hou, Z. et al. A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2023, 25(7): 075501. DOI:10.1088/2058-6272/acb6dd
    7. Ji, J., Song, W., Hou, Z. et al. Raw signal improvement using beam shaping plasma modulation for uranium detection in ore using laser-induced breakdown spectroscopy. Analytica Chimica Acta, 2022. DOI:10.1016/j.aca.2022.340551
    8. HAN, S.-K., PARK, S.-H., AHN, S.-K. Quantitative analysis of uranium in electrorecovery salt of pyroprocessing using laserinduced breakdown spectroscopy. Plasma Science and Technology, 2021, 23(5): 055502. DOI:10.1088/2058-6272/abed2d
    9. Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7

    Other cited types(0)

Catalog

    Article views (376) PDF downloads (2106) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return