Advanced Search+
GUO Bin (郭斌 ), SONG Zhiquan (宋执权 ), FU Peng (傅鹏 ), JIANG Li (蒋力 ), LI Jinchao (李金超), WANG Min (王敏), DONG Lin (董琳). Thermal Dissipation Modelling and Design of ITER PF Converter Alternating Current Busbar[J]. Plasma Science and Technology, 2016, 18(10): 1049-1054. DOI: 10.1088/1009-0630/18/10/14
Citation: GUO Bin (郭斌 ), SONG Zhiquan (宋执权 ), FU Peng (傅鹏 ), JIANG Li (蒋力 ), LI Jinchao (李金超), WANG Min (王敏), DONG Lin (董琳). Thermal Dissipation Modelling and Design of ITER PF Converter Alternating Current Busbar[J]. Plasma Science and Technology, 2016, 18(10): 1049-1054. DOI: 10.1088/1009-0630/18/10/14

Thermal Dissipation Modelling and Design of ITER PF Converter Alternating Current Busbar

Funds: supported by National Natural Science Foundation of China (No. 51407179)
More Information
  • Received Date: November 22, 2015
  • Because the larger metallic surrounds are heated by the eddy current, which is generated by the AC current flowing through the AC busbar in the International Thermonuclear Experimental Reactor (ITER) poloidal field (PF) converter system, shielding of the AC busbar is required to decrease the temperature rise of the surrounds to satisfy the design requirement. Three special types of AC busbar with natural cooling, air cooling and water cooling busbar structure have been proposed and investigated in this paper. For each cooling scheme, a 3D finite model based on the proposed structure has been developed to perform the electromagnetic and thermal analysis to predict their operation behavior. Comparing the analysis results of the three different cooling patterns, water cooling has more advantages than the other patterns and it is selected to be the thermal dissipation pattern for the AC busbar of ITER PF converter unit. The approach to qualify the suitable cooling scheme in this paper can be provided as a reference on the thermal dissipation design of AC busbar in the converter system.
  • 1 Rebut P H. 1995, Fusion Engineering and Design, 30:85 2 Benfatto I, Mondino P L, Roshal A, et al. 1995,AC/DC converters for the ITER poloidal field system.16th IEEE/NPSS Symposium, 1: 658 3 Fu P, Gao G, Song Z Q, et al. 2013, Fusion Science Technology, 64: 741 4 Fu P, Gao G, Xu L W, et al. 2010, Review and analysis of the AC/DC converter of ITER coil power supply. In Proceedings of Applied Power Electronics Conference,IEEE, Palm Spring, CA, USA, p.1810 5 Jiang L, Gao G, Xu L W, et al. 2015, Journal of Fusion Energy, 34: 49 6 Choi Seung-Kil, Kim Jin-Soo, Chang Hong-Soon,et al. 2001, Analys is on the magnetic properties of an isolated phase bus system. Electrical Machines and Systems. 2001. ICEMS 2001. Proceedings of the Fifth International Conference on, Shenyang, 2001, Vol.2,p.1166–1169 7 Skeats W F, Swerdlow N. 1962, Power Apparatus and Systems, Part III, Transactions of the American Institute of Electrical Engineers, 81: 655 8 IEEE Standard for Metal-Enclosed Bus, in IEEE Std C37.23-2003 (Revision of IEEE Std C37.23-1987),p.01-48, 2004 9 You J, Liang H, Ma G, et al. 2012, Steady Temperature Rise Analysis of Non Segregated Phase Bus Based on Finite Element Method, Electrical Contacts (Holm).2012 IEEE 58th Holm Conference on, Portland, OR,2012, p.1–5 10 Abram L, Goodall J, Wentworth T G. 1969, The Proceedings of the Institution of Electrical Engineers,116: 1185 11 Zhao Bo, Zhang Hongliang. 2010, The application of Ansoft 12 in the Electromagnetic Engineer Fields.China Waterpower Press, Beijing (in Chinese) 12 Yu Yong. 2008, Introductory and Advanced Course Book for Fluent. Beijing Institute of Technology Press,Beijing (in Chinese)
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [3]Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [6]DUANMU Gang(端木刚), ZHAO Changming(赵长明), LIANG Chao(梁超), XU Yuemin(徐跃民). Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave[J]. Plasma Science and Technology, 2014, 16(11): 1059-1062. DOI: 10.1088/1009-0630/16/11/11
    [7]DUAN Yaoyong (段耀勇), GUO Yonghui (郭永辉), QIU Aici (邱爱慈). Shock Wave and Particle Velocities of Typical Metals on Shock Adiabats[J]. Plasma Science and Technology, 2013, 15(8): 727-731. DOI: 10.1088/1009-0630/15/8/02
    [8]ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13
    [9]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
    [10]WU Junhui, WANG Xiaohua, MA Zhiying, RONG Mingzhe, YAN Jing. Numerical Simulation of Gas Flow during Arcing Process for 252kV Puffer Circuit Breakers[J]. Plasma Science and Technology, 2011, 13(6): 730-734.

Catalog

    Article views (323) PDF downloads (859) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return