Advanced Search+
XIE Qing (谢庆), LIU Xiong (刘熊), ZHANG Cheng (章程), WANG Ruixue (王瑞雪), RAO Zhangquan (饶章权), SHAO Tao (邵涛). Aging Characteristics on Epoxy Resin Surface Under Repetitive Microsecond Pulses in Air at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(3): 325-330. DOI: 10.1088/1009-0630/18/3/18
Citation: XIE Qing (谢庆), LIU Xiong (刘熊), ZHANG Cheng (章程), WANG Ruixue (王瑞雪), RAO Zhangquan (饶章权), SHAO Tao (邵涛). Aging Characteristics on Epoxy Resin Surface Under Repetitive Microsecond Pulses in Air at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(3): 325-330. DOI: 10.1088/1009-0630/18/3/18

Aging Characteristics on Epoxy Resin Surface Under Repetitive Microsecond Pulses in Air at Atmospheric Pressure

Funds: supported by the Natural Science Foundation of Hebei Province (No. E2015502081), National Natural Science Foundation of China (Nos. 51222701, 51307060), and the National Basic Research Program of China (No. 2014CB239505-3)
More Information
  • Received Date: September 06, 2015
  • Research on aging characteristics of epoxy resin (EP) under repetitive microsecond pulses is important for the design of insulating materials in high power apparatus. It is because that very fast transient overvoltage always occurs in a power system, which causes flashover and is one of the main factors causing aging effects of EP materials. Therefore, it is essential to obtain a better understanding of the aging effect on an EP surface resulting from flashover. In this work, aging effects on an EP surface were investigated by surface flashover discharge under repetitive microsecond pulses in atmospheric pressure. The investigations of parameters such as the surface micro-morphology and chemical composition of the insulation material under different degrees of aging were conducted with the aid of measurement methods such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Results showed that with the accumulation of aging energy on the material surface, the particles formed on the material surface increased both in number and size, leading to the growth of surface roughness and a reduction in the water contact angle; the surface also became more absorbent. Furthermore, in the aging process, the molecular chains of EP on the surface were broken, resulting in oxidation and carbonisation.
  • 1 Shao T, Yang W, Zhang C, et al. 2014, Appl. Phys.Lett., 105: 071607 2 Krile J T, Vela R, Neuber A, et al. 2007, IEEE Trans.Plasma Sci., 35: 1580 3 Zhang H, Liu J. 2014, Rev. Sci. Instrum., 85: 044709 4 Jadidian J, Zahn M, Lavesson N, et al. 2012, Appl.Phys. Lett., 100: 172903 5 Tewari S V, Kshirsagar R J, Roy A, et al. 2014, Laser Part. Beams, 32: 681 6 Cheng X, Liu J, Qian B. 2012, Appl. Phys. Lett., 101:082903 7 Douar M A, Beroual A, Souche X. 2015, IEEE Trans.Dielectr. Electr. Insul., 22: 391 8 Kim K S, Kam S K, Mok Y S. 2015, Chem. Eng. J.,271: 31 9 Shao T, Zhou Y, Zhang C, et al. 2015, IEEE Trans.Dielectr. Electr. Insul., 22: 1747 10 Zhang C, Zhou Y, Shao T, et al. 2014, Appl. Surf. Sci.,311: 468 11 Roggendorf C, Schnettler A. 2012, IEEE Trans. Dielectr. Electr. Insul., 19: 973 12 Kumara S, Ma B, Serdyuk Y V, et al. 2012, IEEE Trans. Dielectr. Electr. Insul., 19: 2189 13 Wang R, Zhang C, Liu X, et al. 2015, Appl. Surf. Sci.,328: 509 14 Drabik M, Kousal J, Celma C, et al. 2014, Plasma Processes Polym., 11: 496 15 Liu X, Lin H, Liang Y, et al. 2015, Transactions of China Electrotechnical Society, 30: 158 (in Chinese) 16 Zhang C, Shao T, Wang R, et al. 2015, IEEE Trans.Dielectr. Electr. Insul., 22: 1907 17 Morales K P, Krile J T, Neuber A, et al. 2006, IEEE Trans. Dielectr. Electr. Insul., 13: 803 18 Neuber A A, Krile J T, Edmiston G F, et al. 2007,Phys. Plasmas, 14: 057102 19 Edmiston G F, Krile J T, Neuber A. 2008, IEEE Trans.Plasma Sci., 36: 946 20 Ran H, Wang J, Wang T, et al. 2013, IEEE Trans.Dielectr. Electr. Insul., 20: 1161 21 Ran H, Wang L, Wang J, et al. 2014, Plasma Sci. Technol., 16: 465 22 Tanaka T. 2002, IEEE Trans. Dielectr. Electr. Insul.,9: 704 23 Bian X, Chen L, Yu D, et al. 2012, Appl. Phys. Lett.,101: 174103
  • Related Articles

    [1]H L SWAMI, M ABHANGI, Sanchit SHARMA, S TIWARI, A N MISTRY, V VASAVA, V MEHTA, S VALA, C DANANI, V CHAUDHARI, P CHAUDHURI. A neutronic experiment to support the design of an Indian TBM shield module for ITER[J]. Plasma Science and Technology, 2019, 21(6): 65601-065601. DOI: 10.1088/2058-6272/ab079a
    [2]Shuling XU (徐淑玲), Mingzhun LEI (雷明准), Sumei LIU (刘素梅), Kun LU (陆坤), Kun XU (徐坤), Kun PEI (裴坤). Neutronic investigation and activation calculation for CFETR HCCB blankets[J]. Plasma Science and Technology, 2017, 19(12): 125603. DOI: 10.1088/2058-6272/aa8bfe
    [3]LI Jia (李佳), ZHANG Xiaokang (张小康), GAO Fangfang (高芳芳), PU Yong (蒲勇). Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(2): 179-183. DOI: 10.1088/1009-0630/18/2/14
    [4]MIAO Peng (缪鹏), ZHAO Fengchao (赵奉超), CAO Qixiang (曹启祥), ZHANG Guoshu (张国书), FENG Kaiming (冯开明). Preliminary Shielding Analysis for HCCB TBM Transport[J]. Plasma Science and Technology, 2015, 17(9): 781-786. DOI: 10.1088/1009-0630/17/9/10
    [5]XIE Huiqiao(谢会乔), TAN Yi(谭熠), KE Rui(柯锐), WANG Wenhao(王文浩), GAO Zhe(高喆). Analysis of the Gas Puffing Performance for Improving the Repeatability of Ohmic Discharges in the SUNIST Spherical Tokama[J]. Plasma Science and Technology, 2014, 16(8): 732-737. DOI: 10.1088/1009-0630/16/8/03
    [6]LI Xiaoling (李晓玲), WAN Baonian (万宝年), GUO Zhirong (郭智荣), ZHONG Guoqiang (钟国强), HU Liqun (胡立群), LIN Shiyao (林士耀), ZHANG Xinjun (张新军), DING Siye (丁斯晔), LU Bo (吕波). Neutron Yields Based on Transport Calculation in EAST ICRF Minority Heating Plasmas[J]. Plasma Science and Technology, 2013, 15(5): 411-416. DOI: 10.1088/1009-0630/15/5/03
    [7]WANG Pinghuai (王平怀), CHEN Jiming (谌继明), FU Haiying (付海英), LIU Shi (刘实), LI Xiongwei (李雄伟), XU Zengyu (许增裕). Technical Issues for the Fabrication of a CN-HCCB-TBM Based on RAFM Steel CLF-1[J]. Plasma Science and Technology, 2013, 15(2): 133-136. DOI: 10.1088/1009-0630/15/2/11
    [8]LIU Jian (刘健), CHU Yanyun (褚衍运), REN Zhongzhou (任中洲). Theoretical Study of the Nuclear Charge Distributions of Tin Isotopes[J]. Plasma Science and Technology, 2012, 14(7): 614-618. DOI: 10.1088/1009-0630/14/7/11
    [9]ZHENG Na (郑娜), ZHONG Chunlai (钟春来), FAN Tieshuan(樊铁栓). The Calculation of Prompt Fission Neutron from 233U(n, f) Reaction by Multi-Modal Los Alamos Model[J]. Plasma Science and Technology, 2012, 14(6): 521-525. DOI: 10.1088/1009-0630/14/6/19
    [10]YANG Zaihong (杨再宏), YOU Haibo (游海波), XIAO Jun(肖军), YE Yanlin (叶沿林). Performance Calibration using Cosmic Rays for the Multi-neutron Correlation Spectrometer[J]. Plasma Science and Technology, 2012, 14(6): 464-468. DOI: 10.1088/1009-0630/14/6/06

Catalog

    Article views (396) PDF downloads (1060) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return