Advanced Search+
Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504
Citation: Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504

Analysis of the operating parameters of a vortex electrostatic precipitator

Funds: This work was sponsored by the National Natural Science Foundation of China (grant no. 51278229) and the Six Talent Peak Project of Jiangsu Province (grant no. JNHB-018).
More Information
  • Received Date: April 25, 2016
  • A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion concentrations within the precipitator can be significantly increased. Correspondingly, the charging and coagulation rates of fine particles and particle migration velocity are significantly improved within the VEP. Since it can effectively collect fine particles and reduce precipitator size, VEPs represent a new type of electrostatic precipitator with great application potential. In this work the change curve of the external voltage, gas velocity, row spacing and effective collecting area influencing the precipitation efficiency were acquired through a single-factor experiment. Using an orthogonal regression design, attempts were made to analyze the major operating parameters influencing the collecting efficiency of fine particles, establish a multiple linear regression model and analyze the weights of factors and then acquire quantitative rules relating experimental indicators and factors. The regression model was optimized by MATLAB programming, and we then obtained the optimal factor combination which can enhance the efficiency of fine particle collection. The final optimized result is that: when gas velocity is 3.4 m s−1, the external voltage is 18 kV, row spacing is 100 mm and the effective collecting area is 1.13 m2, the rate of fine particle collection is 89.8867%. After determining and analyzing the state of the internal flow field within the VEP by particle image velocimetry (PIV), the results show that, for a particular gas velocity, a vortex zone and laminar zone are distinctly formed within the VEP, which increases the ion transport ratio as well as the charging, coagulation and collection rates of fine particles within the precipitator, thus making further improvements in the efficiency of fine particle collection.
  • [1]
    Jianlin H et al 2014 Atmos. Environ. 95 598
    [2]
    De Longueville F et al 2014 Water Air Soil Pollut. 225 2186
    [3]
    Yang S et al 2015 Combin. Chem. High Throughput Screening 19 100
    [4]
    Alolayan M A et al 2013 Sci. Total Environ. 448 14
    [5]
    PuiDYH,Chen SCandZuoZ 2014 Particuology 13 1
    [6]
    Choi J K et al 2013 Sci. Total Environ. 447 370
    [7]
    Dabek-Zlotorzynska E et al 2011 Atmos. Environ. 45 673
    [8]
    Ze Z et al 2013 J. Hepatol. 58 148
    [9]
    Cheng Y H, Chang H P and Hsieh C J 2011 Atmos. Environ. 45 2034
    [10]
    Leem J H, Kim S T and Kim H C 2015 Ann. Occup. Environ. Med. 27 1
    [11]
    Yu S et al 2013 Environ. Int. 54 100
    [12]
    Nasser Z et al 2015 Int. J. Occup. Med. Environ. Health 28 641
    [13]
    Ziyi L et al 2015 Environ. Sci. Technol. 49 8683
    [14]
    Jibao Z et al 2012 J. Electrost. 70 285
    [15]
    Thonglek V and Kiatsiriroat T 2013 J. Electrost. 72 33
    [16]
    Jaworek A et al 2013 J. Electrost. 71 345
    [17]
    Chengwu Y et al 2010 IEEE Int. Conf. on Mechanic Automation & Control Engineering vol 6 p2038
    [18]
    Chengwu Y et al 2010 Environ. Eng. 28 49 (in Chinese)
    [19]
    Shuai M et al 2011 IEEE Int. Conf. on Multimedia Technology (ICMT) vol 7 p 4714
    [20]
    Congxiang L et al 2014 Mech. Eng. 11 52 (in Chinese)
  • Related Articles

    [1]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [2]Junying WU (伍俊英), Long WANG (汪龙), Yase LI (李雅瑟), Lijun YANG (杨利军), Manzoor SULTAN, Lang CHEN (陈朗). Characteristics of a plasma flow field produced by a metal array bridge foil explosion[J]. Plasma Science and Technology, 2018, 20(7): 75501-075501. DOI: 10.1088/2058-6272/aab783
    [3]Zheng ZHANG (张政), Xueke CHE (车学科), Wangsheng NIE (聂万胜), Jinlong LI (李金龙), Tikai ZHENG (郑体凯), Liang LI (李亮), Qinya CHEN (陈庆亚), Zhi ZHENG (郑直). Study of vortex in flow fields induced by surface dielectric barrier discharge actuator at low pressure based on Q criterion[J]. Plasma Science and Technology, 2018, 20(1): 14006-014006. DOI: 10.1088/2058-6272/aa8e95
    [4]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation[J]. Plasma Science and Technology, 2016, 18(3): 319-324. DOI: 10.1088/1009-0630/18/3/17
    [5]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Rapid Thermal-Hydraulic Analysis and Design Optimization of ITER Upper ELM Coils[J]. Plasma Science and Technology, 2014, 16(10): 978-983. DOI: 10.1088/1009-0630/16/10/14
    [6]ZHENG Jinxing(郑金星), SONG Yuntao(宋云涛), YANG Qingxi(杨庆喜), LIU Wandong(刘万东), DING Weixing(丁卫星), LIU Xufeng(刘旭峰), YANG Lei(杨雷). Design of a Wedge-Shaped Toroidal Field Winding for KTX Device[J]. Plasma Science and Technology, 2014, 16(9): 878-883. DOI: 10.1088/1009-0630/16/9/13
    [7]JIANG Li(蒋力), XU Liuwei(许留伟), GAO Ge(高格), DONG Lin(董琳), WANG Min(王敏). Optimization Design for a High Voltage DC Power Supply Module Based on PSM Technology[J]. Plasma Science and Technology, 2014, 16(4): 424-428. DOI: 10.1088/1009-0630/16/4/23
    [8]LIU Xiaodong(刘晓东), FU Bao(付豹), ZHUANG Ming(庄明). The Design and Analysis of Helium Turbine Expander Impeller with a Given All-Over-Controlled Vortex Distribution[J]. Plasma Science and Technology, 2014, 16(3): 288-293. DOI: 10.1088/1009-0630/16/3/21
    [9]CHENG Jia(程嘉), ZHU Yu(朱煜), JI Linhong(季林红). Modeling Approach and Analysis of the Structural Parameters of an Inductively Coupled Plasma Etcher Based on a Regression Orthogonal Design[J]. Plasma Science and Technology, 2012, 14(12): 1059-1068. DOI: 10.1088/1009-0630/14/12/05
    [10]ZHANG Xing (张兴), YUAN Xi (袁熙), XIE Xufei (谢旭飞), FAN Tieshuan (樊铁栓) ), CHEN Jinxiang (陈金象), LI Xiangqing(李湘庆). The Design and Optimization of a Neutron Time-of-Flight Spectrometer with Double Scintillators for Neutron Diagnostics on EAST[J]. Plasma Science and Technology, 2012, 14(7): 675-682. DOI: 10.1088/1009-0630/14/7/24

Catalog

    Article views (375) PDF downloads (714) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return