Advanced Search+
Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
Citation: Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505

Modelling effect of magnetic field on material removal in dry electrical discharge machining

More Information
  • Received Date: January 04, 2016
  • One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single-and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%–10% over the respective experimental values.
  • [1]
    Govindan P and Joshi S S 2011 Ann. CIRP 60 239
    [2]
    Yoshida Z M 2003 Ann. CIRP 52 147
    [3]
    Govindan P and Joshi S S 2010 Int. J. Mach. Tools Manuf. 50 431
    [4]
    Kadam G 2009 Masters Dissertation Indian Institute of Technology Bombay
    [5]
    Lin Y C and Lee H S 2011 Int. J. Mach. Tools Manuf. 48 1179
    [6]
    Heinz K et al 2011 J. Manuf. Sci. Eng. 133 1
    [7]
    Koike K and Ono N 2001 27th Int. Electric Propulsion Conf. IEPC-01-131
    [8]
    Hashem M S M 1981 Radiat. Transfer 31 91
    [9]
    Kulumbaev E B and Lelevkin V M 1999 High Temp. 38 653
    [10]
    Petraconi G 2004 Braz. J. Phys. 34 1662
    [11]
    Govindan P et al 2013 J. Mater. Process. Technol. 213 1048
    [12]
    Sen S N 1962 Process Phys. 80 909
    [13]
    Sen S N and Das R P 1973 Collision 39 448
    [14]
    Kanmani S 2011 Adv. Mater. Res. 300 1334
    [15]
    Beilis I I et al 1998 J. Appl. Phys. 83 709
    [16]
    Lin Z Q 2005 Int. J. Adv. Manuf. Technol. 27 288
    [17]
    Zworykin V K 1933 Electron Opt. 215 535
    [18]
    Ryzko H 1965 Proc. Phys. Soc. 85 1283
    [19]
    Temeev A A 1997 23rd Int. Conf. on Phenomena in Ionized Gases (17–22 July) (France: Universite Paul Sabatier)
    [20]
    Kontaratos A N 1965 Appl. Sci. Res. 12 27
  • Related Articles

    [1]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f
    [2]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [3]H SOBHANI, H R SABOUHI, S FEILI, E DADAR. Mode filtering based on ponderomotive force nonlinearity in a plasma filled rectangular waveguide[J]. Plasma Science and Technology, 2017, 19(10): 105504. DOI: 10.1088/2058-6272/aa8089
    [4]Xingyu GUO (郭星宇), Zhe GAO (高喆), Guozhang JIA (贾国章). One-dimensional ordinary–slow extraordinary–Bernstein mode conversion in the electron cyclotron range of frequencies[J]. Plasma Science and Technology, 2017, 19(8): 85101-085101. DOI: 10.1088/2058-6272/aa6a50
    [5]Guiliang SONG (宋桂良), Huishan CAI (蔡辉山). Linear tearing modes in an electron-positron plasma[J]. Plasma Science and Technology, 2017, 19(4): 45002-045002. DOI: 10.1088/2058-6272/aa5801
    [6]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [7]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [8]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [9]M. MAHDAVI, A. GHOLAMI. Ignition Conditions for Simulated Fuel Pellets in Degenerate Plasma[J]. Plasma Science and Technology, 2013, 15(4): 323-328. DOI: 10.1088/1009-0630/15/4/04
    [10]GAO Zhe. Analytical Theory of the Geodesic Acoustic Mode in the Small and Large Orbit Drift Width Limits and its Application in a Study of Plasma Shaping Effect[J]. Plasma Science and Technology, 2011, 13(1): 15-20.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return