Advanced Search+
Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
Citation: Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505

Modelling effect of magnetic field on material removal in dry electrical discharge machining

More Information
  • Received Date: January 04, 2016
  • One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single-and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%–10% over the respective experimental values.
  • [1]
    Govindan P and Joshi S S 2011 Ann. CIRP 60 239
    [2]
    Yoshida Z M 2003 Ann. CIRP 52 147
    [3]
    Govindan P and Joshi S S 2010 Int. J. Mach. Tools Manuf. 50 431
    [4]
    Kadam G 2009 Masters Dissertation Indian Institute of Technology Bombay
    [5]
    Lin Y C and Lee H S 2011 Int. J. Mach. Tools Manuf. 48 1179
    [6]
    Heinz K et al 2011 J. Manuf. Sci. Eng. 133 1
    [7]
    Koike K and Ono N 2001 27th Int. Electric Propulsion Conf. IEPC-01-131
    [8]
    Hashem M S M 1981 Radiat. Transfer 31 91
    [9]
    Kulumbaev E B and Lelevkin V M 1999 High Temp. 38 653
    [10]
    Petraconi G 2004 Braz. J. Phys. 34 1662
    [11]
    Govindan P et al 2013 J. Mater. Process. Technol. 213 1048
    [12]
    Sen S N 1962 Process Phys. 80 909
    [13]
    Sen S N and Das R P 1973 Collision 39 448
    [14]
    Kanmani S 2011 Adv. Mater. Res. 300 1334
    [15]
    Beilis I I et al 1998 J. Appl. Phys. 83 709
    [16]
    Lin Z Q 2005 Int. J. Adv. Manuf. Technol. 27 288
    [17]
    Zworykin V K 1933 Electron Opt. 215 535
    [18]
    Ryzko H 1965 Proc. Phys. Soc. 85 1283
    [19]
    Temeev A A 1997 23rd Int. Conf. on Phenomena in Ionized Gases (17–22 July) (France: Universite Paul Sabatier)
    [20]
    Kontaratos A N 1965 Appl. Sci. Res. 12 27
  • Related Articles

    [1]Xiangcheng DONG (董向成), Jianhong CHEN (陈建宏), Xiufang WEI (魏秀芳), PingYUAN (袁萍). Calculating the electron temperature in the lightning channel by continuous spectrum[J]. Plasma Science and Technology, 2017, 19(12): 125304. DOI: 10.1088/2058-6272/aa8acb
    [2]YANG Lanlan (杨兰兰), TU Yan (屠彦), YU Yongbo (俞永波), HU Dinglan (户玎岚), ZHANG Xiong (张雄). Spatial and Excitation Variations for Different Applied Voltages in an Atmospheric Neon Plasma Jet[J]. Plasma Science and Technology, 2016, 18(9): 912-917. DOI: 10.1088/1009-0630/18/9/07
    [3]JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良). Nonequilibrium Atmospheric Pressure Ar/O2 Plasma Jet: Properties and Application to Surface Cleaning[J]. Plasma Science and Technology, 2016, 18(2): 168-172. DOI: 10.1088/1009-0630/18/2/12
    [4]ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
    [5]ZHOU Yongjie(周永杰), YUAN Qianghua(袁强华), WANG Xiaomin(王晓敏), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Optical Spectroscopic Investigation of Ar/CH 3 OH and Ar/N 2 /CH 3 OH Atmospheric Pressure Plasma Jets[J]. Plasma Science and Technology, 2014, 16(2): 99-103. DOI: 10.1088/1009-0630/16/2/03
    [6]LI Zhanguo (李战国), LI Ying (李颖), CAO Peng (曹鹏), ZHAO Hongjie (赵红杰). Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet[J]. Plasma Science and Technology, 2013, 15(7): 696-701. DOI: 10.1088/1009-0630/15/7/17
    [7]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [8]LIANG Haoming (梁浩明), XIAO Chijie (肖池阶), ZHOU Guiping(周桂萍), PU Zuyin(濮祖荫), WANG Honggang (王红刚), WANG Xiaogang (王晓钢). Alfvénic Fluctuations in an Interplanetary Coronal Mass Ejection Observed Near 1 AU[J]. Plasma Science and Technology, 2012, 14(2): 102-106. DOI: 10.1088/1009-0630/14/2/04
    [9]ZHANG Haiyan, YE Chao, NING Zhaoyuan. Dependence of Decamethylcyclopentasiloxane (DMCPS) Dissociation on Ionized Energy by Using Quadrupole Mass Spectrum[J]. Plasma Science and Technology, 2010, 12(6): 677-680.
    [10]YUAN Zhongcai(袁忠才), SHI Jiaming (时家明), HUANG Yong (黄勇), XU Bo (许波). Faraday angle of Linearly Polarized Waves along Magnetic Field in Magnetized Collisional Plasmas[J]. Plasma Science and Technology, 2010, 12(5): 519-522.

Catalog

    Article views (283) PDF downloads (874) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return