Advanced Search+
Kalsoom AZRA, Muddasir ALI, Azhar HUSSAIN. Study of the O-mode in a relativistic degenerate electron plasma[J]. Plasma Science and Technology, 2017, 19(3): 35001-035001. DOI: 10.1088/2058-6272/19/3/035001
Citation: Kalsoom AZRA, Muddasir ALI, Azhar HUSSAIN. Study of the O-mode in a relativistic degenerate electron plasma[J]. Plasma Science and Technology, 2017, 19(3): 35001-035001. DOI: 10.1088/2058-6272/19/3/035001

Study of the O-mode in a relativistic degenerate electron plasma

More Information
  • Received Date: May 17, 2016
  • Using the linearized relativistic Vlasov–Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. The dispersion relation for the O-mode in a relativistic degenerate electron plasma is investigated by employing the Fermi–Dirac distribution function. The propagation characteristics of the O-mode (cut offs, resonances, propagation regimes, harmonic structure) are examined by using speci?c values of the density and the magnetic field that correspond to different relativistic dense environments. Further, it is observed that due to the relativistic effects the cut off and the resonance points are shifted to low frequency values, as a result the propagation regime is reduced. The dispersion relations for the non-relativistic and the ultra-relativistic limits are also presented.
  • [1]
    Guest G 2009 Electron Cyclotron Heating of Plasmas (Weinheim: Wiley-VCH Verlag GmbH and Co. KGaA)
    [2]
    Chen F F 1984 Introduction to Plasma Physics and Controlled Fusion (New York: Plenum)
    [3]
    Cheo B R and Kuo S P 1981 Phys. Fluids 24 784
    [4]
    Nambu M 1974 Phys. Fluids 17 1885
    [5]
    Sodha M S et al 1980 Proc. Indian Nat. Sci. Acad. 46 343
    [6]
    McDonald D C et al 1998 Phys. Plasmas 5 883
    [7]
    Nikolic L J and Pesic S 1998 Plasma Phys. Control. Fusion 40 1373
    [8]
    Ali M, Zaheer S and Murtaza G 2010 Prog. Theor. Phys. 124 1083
    [9]
    Abbas G, Murtaza G and Kingham R J 2010 Phys. Plasmas 17 072105
    [10]
    Zaheer S and Murtaza G 2008 Phys. Scr. 77 035503
    [11]
    Bashir M F and Murtaza G 2012 Braz. J. Phys. 42 487
    [12]
    Cairns R A and LashmoreDavies C N 1982 Phys. Fluids 25 1605
    [13]
    Farrell W M 2011 J. Geophys. Res. 106 15701-15709
    [14]
    Khan S A 2012 Phys. Plasmas 19 014506
    [15]
    Alexandrov A F, Bogdankevich L S and Rukhadze A A 1984 Principles of Plasma Electrodynamics (Berlin: Springer)
    [16]
    Abbas G, Bashir M F and Murtaza G 2012 Phys. Plasmas 19 072121
    [17]
    Iqbal Z et al 2014 Phys. Plasmas 21 032128
    [18]
    Roy B N 2002 Fundamentals of Classical and Statistical Thermodynamics (New York: Wiley)
    [19]
    Montgomery D C and Tidman D A 1964 Plasma Kinetic Theory (New York: McGraw-Hill)
    [20]
    Pathria R K and Beale P D 2011 Statistical Mechanics (Oxford: Academic)
    [21]
    Huang K 1963 Statistical Mechanics (New York: Wiley)
    [22]
    Chandra S, Maji P and Ghosh B 2014 Int. J. Math. Comput. Phys. Electr. Comput. Eng. 8 5
    [23]
    Akbari-Moghanjoughi M 2011 Phys. Plasmas 18 012701
    [24]
    Akbari-Moghanjoughi M and Kalejahi A E 2013 J. Plasma Phys. 79 1081
    [25]
    Shah H A et al 2011 Phys. Plasmas 18 102306
    [26]
    Mahmood S, Sadiq S and Haque Q 2013 Phys. Plasmas 20 122305
    [27]
    Ichimaru S 1973 Basic Principles of Plasma Physics: A Statistical Approach (New York: Addison-Wesley)
  • Related Articles

    [1]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f
    [2]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [3]H SOBHANI, H R SABOUHI, S FEILI, E DADAR. Mode filtering based on ponderomotive force nonlinearity in a plasma filled rectangular waveguide[J]. Plasma Science and Technology, 2017, 19(10): 105504. DOI: 10.1088/2058-6272/aa8089
    [4]Xingyu GUO (郭星宇), Zhe GAO (高喆), Guozhang JIA (贾国章). One-dimensional ordinary–slow extraordinary–Bernstein mode conversion in the electron cyclotron range of frequencies[J]. Plasma Science and Technology, 2017, 19(8): 85101-085101. DOI: 10.1088/2058-6272/aa6a50
    [5]Guiliang SONG (宋桂良), Huishan CAI (蔡辉山). Linear tearing modes in an electron-positron plasma[J]. Plasma Science and Technology, 2017, 19(4): 45002-045002. DOI: 10.1088/2058-6272/aa5801
    [6]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [7]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [8]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [9]M. MAHDAVI, A. GHOLAMI. Ignition Conditions for Simulated Fuel Pellets in Degenerate Plasma[J]. Plasma Science and Technology, 2013, 15(4): 323-328. DOI: 10.1088/1009-0630/15/4/04
    [10]GAO Zhe. Analytical Theory of the Geodesic Acoustic Mode in the Small and Large Orbit Drift Width Limits and its Application in a Study of Plasma Shaping Effect[J]. Plasma Science and Technology, 2011, 13(1): 15-20.

Catalog

    Article views (261) PDF downloads (687) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return