Advanced Search+
Sh RAHMATALLAHPUR, A ROSTAMI, S KHORRAM. Two-dimensional analysis of a negative differential conductance gate transistor as a THz emitter[J]. Plasma Science and Technology, 2017, 19(4): 45001-045001. DOI: 10.1088/2058-6272/aa4ee2
Citation: Sh RAHMATALLAHPUR, A ROSTAMI, S KHORRAM. Two-dimensional analysis of a negative differential conductance gate transistor as a THz emitter[J]. Plasma Science and Technology, 2017, 19(4): 45001-045001. DOI: 10.1088/2058-6272/aa4ee2

Two-dimensional analysis of a negative differential conductance gate transistor as a THz emitter

More Information
  • Received Date: June 07, 2016
  • We investigate plasma modes in a transistor including a negative differential conductance in the gate. The analytical results show that the plasma wave generation is substantially influenced by the lateral direction (width of the transistor), gate leakage current and viscosity. The injection from the gate (opposed to the gate leakage current) can improve the plasma oscillations and their amplitude with respect to ordinary transistors. We also estimate, which to our best knowledge has been derived for the first time, the total power emitted by the transistor and the emitted pattern which qualitatively gives reasonable agreement with the experimental data. The results show that the radiated power depends on various parameters such as drift velocity, momentum relaxation time, gate leakage current and especially the lateral direction. A negative gate current enhances the power while the gate leakage current decreases the power.
  • [1]
    Dyakonov M I and Shur M 1993 Phys. Rev. Lett. 71 2465
    [2]
    Dyakonov M I 2008 Semiconductors 42 984
    [3]
    Lusakowski J et al 2005 J. Appl. Phys. 97 064307
    [4]
    El Fatimy A et al 2010 J. Appl. Phys. 107 024504
    [5]
    Ryzhii V et al 2006 J. Appl. Phys. 99 084507
    [6]
    Satou A et al 2008 SISPAD 2008: Int. Conf. on Simulation of Semiconductor Processes and Devices (Hakone: IEEE) p197
    [7]
    Satou A et al 2009 Phys. Status Solidi b 9 2146
    [8]
    Ryzhii V and Shur M 2001 Japan. J. Appl. Phys. 40 546
    [9]
    Deutschmann R et al 2000 Physica E 7 294
    [10]
    Rodríguez B S et al 2013 IEEE Trans. Terahertz Sci. Technol. 3 200
    [11]
    Rodríguez B S et al 2012 ECS Trans. 49 93
    [12]
    Asada M, Suzuki S and Kishimoto N 2008 Japan. J. Appl. Phys. 47 4375
    [13]
    Suzuki S et al 2010 Appl. Phys. Lett. 97 42102
    [14]
    Suzuki S et al 2009 Appl. Phys. Express 2 054501
    [15]
    Zhang L 2016 Plasma Sci. Technol. 18 360
    [16]
    Landau L D and Lifshitz E M 1978 Fluid Mechanics (Oxford: Pergamon)
    [17]
    Rupper G, Rudin S and Crowne F J 2012 Solid State Electron. 78 102
    [18]
    Mendoza M, Herrmann H J and Succi S 2013 Sci. Rep. 3 1052
    [19]
    Dmitriev A P, Furman A S and Kachorovskii V Y 1996 Phys. Rev. B 54 14020
    [20]
    Jackson J D 1962 Classical Electrodynamics (Singapore: Wiley)
  • Related Articles

    [1]Kefeng SHANG, Wudi CAO, Weiwei HUAN, Nan JIANG, Na LU, Jie LI. Effect of megapore particles packing on dielectric barrier discharge, O3 generation and benzene degradation[J]. Plasma Science and Technology, 2022, 24(1): 015501. DOI: 10.1088/2058-6272/ac3379
    [2]Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50
    [3]Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
    [4]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [5]Yunfeng HAN (韩云峰), Shaoyang WEN (温少扬), Hongwei TANG (汤红卫), Xianhu WANG (王贤湖), Chongshan ZHONG (仲崇山). Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 14001-014001. DOI: 10.1088/2058-6272/aa947a
    [6]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [7]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), GAO Ying (高莹), JIANG Yongfeng (蒋永锋), WEN Wen (文文), CHEN Longwei (陈龙威). Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water[J]. Plasma Science and Technology, 2016, 18(3): 278-286. DOI: 10.1088/1009-0630/18/3/11
    [8]HU Jian (胡健), JIANG Nan (姜楠), LI Jie (李杰), SHANG Kefeng (商克峰), LU Na (鲁娜), WU Yan (吴彦), MIZUNO Akira (水野障). Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power[J]. Plasma Science and Technology, 2016, 18(3): 254-258. DOI: 10.1088/1009-0630/18/3/07
    [9]QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13
    [10]JIANG Nan(姜楠), LU Na (鲁娜), LI Jie(李杰), WU Yan(吴彦). Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Rreactor[J]. Plasma Science and Technology, 2012, 14(2): 140-146. DOI: 10.1088/1009-0630/14/2/11

Catalog

    Article views (286) PDF downloads (633) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return