Advanced Search+
Sh RAHMATALLAHPUR, A ROSTAMI, S KHORRAM. Two-dimensional analysis of a negative differential conductance gate transistor as a THz emitter[J]. Plasma Science and Technology, 2017, 19(4): 45001-045001. DOI: 10.1088/2058-6272/aa4ee2
Citation: Sh RAHMATALLAHPUR, A ROSTAMI, S KHORRAM. Two-dimensional analysis of a negative differential conductance gate transistor as a THz emitter[J]. Plasma Science and Technology, 2017, 19(4): 45001-045001. DOI: 10.1088/2058-6272/aa4ee2

Two-dimensional analysis of a negative differential conductance gate transistor as a THz emitter

More Information
  • Received Date: June 07, 2016
  • We investigate plasma modes in a transistor including a negative differential conductance in the gate. The analytical results show that the plasma wave generation is substantially influenced by the lateral direction (width of the transistor), gate leakage current and viscosity. The injection from the gate (opposed to the gate leakage current) can improve the plasma oscillations and their amplitude with respect to ordinary transistors. We also estimate, which to our best knowledge has been derived for the first time, the total power emitted by the transistor and the emitted pattern which qualitatively gives reasonable agreement with the experimental data. The results show that the radiated power depends on various parameters such as drift velocity, momentum relaxation time, gate leakage current and especially the lateral direction. A negative gate current enhances the power while the gate leakage current decreases the power.
  • [1]
    Dyakonov M I and Shur M 1993 Phys. Rev. Lett. 71 2465
    [2]
    Dyakonov M I 2008 Semiconductors 42 984
    [3]
    Lusakowski J et al 2005 J. Appl. Phys. 97 064307
    [4]
    El Fatimy A et al 2010 J. Appl. Phys. 107 024504
    [5]
    Ryzhii V et al 2006 J. Appl. Phys. 99 084507
    [6]
    Satou A et al 2008 SISPAD 2008: Int. Conf. on Simulation of Semiconductor Processes and Devices (Hakone: IEEE) p197
    [7]
    Satou A et al 2009 Phys. Status Solidi b 9 2146
    [8]
    Ryzhii V and Shur M 2001 Japan. J. Appl. Phys. 40 546
    [9]
    Deutschmann R et al 2000 Physica E 7 294
    [10]
    Rodríguez B S et al 2013 IEEE Trans. Terahertz Sci. Technol. 3 200
    [11]
    Rodríguez B S et al 2012 ECS Trans. 49 93
    [12]
    Asada M, Suzuki S and Kishimoto N 2008 Japan. J. Appl. Phys. 47 4375
    [13]
    Suzuki S et al 2010 Appl. Phys. Lett. 97 42102
    [14]
    Suzuki S et al 2009 Appl. Phys. Express 2 054501
    [15]
    Zhang L 2016 Plasma Sci. Technol. 18 360
    [16]
    Landau L D and Lifshitz E M 1978 Fluid Mechanics (Oxford: Pergamon)
    [17]
    Rupper G, Rudin S and Crowne F J 2012 Solid State Electron. 78 102
    [18]
    Mendoza M, Herrmann H J and Succi S 2013 Sci. Rep. 3 1052
    [19]
    Dmitriev A P, Furman A S and Kachorovskii V Y 1996 Phys. Rev. B 54 14020
    [20]
    Jackson J D 1962 Classical Electrodynamics (Singapore: Wiley)
  • Related Articles

    [1]Tatiana HABIB, José Mauricio A. CAIUT, Bruno CAILLIER. Fast synthesis of gold nanoparticles by cold atmospheric pressure plasma jet in the presence of Au+ ions and a capping agent[J]. Plasma Science and Technology, 2024, 26(7): 075505. DOI: 10.1088/2058-6272/ad3499
    [2]Zhaoyuan LIU (刘钊源), Qiang CHEN (陈强), Qinghuo LIU (柳清伙), Kostya (Ken) OSTRIKOV (欧思聪). Visualization of gold nanoparticles formation in DC plasma-liquid systems[J]. Plasma Science and Technology, 2021, 23(7): 75504-075504. DOI: 10.1088/2058-6272/ac0008
    [3]Pan LU, Dong-Wook KIM, Dong-Wha PARK. Simple reactor for the synthesis of silver nanoparticles with the assistance of ethanol by gas–liquid discharge plasma[J]. Plasma Science and Technology, 2019, 21(4): 44005-044005. DOI: 10.1088/2058-6272/aaeada
    [4]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [5]Jinkui FENG (冯金奎), Decheng WANG (王德成), Changyong SHAO (邵长勇), Lili ZHANG (张丽丽), Xin TANG (唐欣). Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress[J]. Plasma Science and Technology, 2018, 20(3): 35505-035505. DOI: 10.1088/2058-6272/aa9b27
    [6]Vukoman JOKANOVIC, Bozana COLOVIC, Anka TRAJKOVSKA PETKOSKA, Ana MRAKOVIC, Bojan JOKANOVIC, Milos NENADOVIC, Manuela FERRARA, Ilija NASOV. Optical properties of titanium oxide films obtained by cathodic arc plasma deposition[J]. Plasma Science and Technology, 2017, 19(12): 125504. DOI: 10.1088/2058-6272/aa8806
    [7]JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15
    [8]JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12
    [9]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [10]LIU Yiying (刘懿莹), WU Yi (吴翊), RONG Mingzhe (荣命哲), HE Hailong (何海龙). Simulation of the Effect of a Metal Vapor Arc on Electrode Erosion in Liquid Metal Current Limiting Device[J]. Plasma Science and Technology, 2013, 15(10): 1006-1011. DOI: 10.1088/1009-0630/15/10/09

Catalog

    Article views (286) PDF downloads (633) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return