Advanced Search+
Liang SONG (宋亮), Xianping WANG (王先平), Le WANG (王乐), Ying ZHANG (张营), Wang LIU (刘旺), Weibing JIANG (蒋卫斌), Tao ZHANG (张涛), Qianfeng FANG (方前锋), Changsong LIU (刘长松). Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique[J]. Plasma Science and Technology, 2017, 19(4): 45502-045502. DOI: 10.1088/2058-6272/aa57f0
Citation: Liang SONG (宋亮), Xianping WANG (王先平), Le WANG (王乐), Ying ZHANG (张营), Wang LIU (刘旺), Weibing JIANG (蒋卫斌), Tao ZHANG (张涛), Qianfeng FANG (方前锋), Changsong LIU (刘长松). Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique[J]. Plasma Science and Technology, 2017, 19(4): 45502-045502. DOI: 10.1088/2058-6272/aa57f0

Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

Funds: This work was financially supported by National Natural Science Foundation of China (No. 11374299).
More Information
  • Received Date: September 17, 2016
  • He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (∼17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.
  • [1]
    Zinkle S J and Ghoniem N M 2000 Fusion Eng. Des. 51–52 55
    [2]
    Lee E H and Mansur L K 2000 J. Nucl. Mater. 278 11
    [3]
    Azevedo C R F 2011 Engin. Fail. Anal. 18 1921
    [4]
    Gaganidze E and Aktaa J 2013 Fusion Eng. Des. 88 118
    [5]
    Zinkle S J, Maziasz P J and Stoller R E 1993 J. Nucl. Mater. 206 266
    [6]
    Ghoniem M and Takata M L 1982 J. Nucl. Mater. 105 276
    [7]
    Gilbert M R et al 2013 J. Nucl. Mater. 442 S755
    [8]
    Peng L et al 2011 Fusion Eng. Des. 86 2624
  • Related Articles

    [1]Xiaonan ZHANG (张小楠), Xianxiu MEI (梅显秀), Shanshan LI (李山山). The irradiation variation of amorphous alloy FeSiB using for fusion devices induced by 2 MeV He ions[J]. Plasma Science and Technology, 2021, 23(2): 25601-025601. DOI: 10.1088/2058-6272/abd97a
    [2]Falun SONG (宋法伦), Fei LI (李飞), Mingdong ZHU (朱明冬), Langping WANG (王浪平), Beizhen ZHANG (张北镇), Haitao GONG (龚海涛), Yanqing GAN (甘延青), Xiao JIN (金晓). Development and experimental study of large size composite plasma immersion ion implantation device[J]. Plasma Science and Technology, 2018, 20(1): 14013-014013. DOI: 10.1088/2058-6272/aa88b0
    [3]Peifang YANG (杨培芳), Chao YE (叶超), Xiangying WANG (王响英), Jiamin GUO (郭佳敏), Su ZHANG (张苏). Control of growth and structure of Ag films by the driving frequency of magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(8): 85504-085504. DOI: 10.1088/2058-6272/aa6619
    [4]Jiamin GUO (郭佳敏), Chao YE (叶超), Xiangying WANG (王响英), Peifang YANG (杨培芳), Su ZHANG (张苏). Growth and structural properties of silicon on Ag films prepared by 40.68 MHz veryhigh-frequency magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(7): 75502-075502. DOI: 10.1088/2058-6272/aa6395
    [5]Yang LIU (刘洋), Kaihong FANG (方开洪), Huiyi LV (吕会议), Jiwei LIU (刘际伟), Boyu WANG (王博宇). Hydrogenation of zirconium film by implantation of hydrogen ions[J]. Plasma Science and Technology, 2017, 19(3): 35502-035502. DOI: 10.1088/2058-6272/19/3/035502
    [6]Hadar MANIS-LEVY, Tsachi LIVNEH, Ido ZUKERMAN, Moshe H. MINTZ, Avi RAVEH. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(10): 954-959. DOI: 10.1088/1009-0630/16/10/09
    [7]ZHAO Yong (赵勇), CHEN Xian (陈贤), FANG Liguang (方利广), YANG Lianfang (杨莲芳), et al.. Effects of Annealing on the Structural and Photoluminescent Properties of Ag-Doped ZnO Nanowires Prepared by Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 817-820. DOI: 10.1088/1009-0630/15/8/19
    [8]GAO Huanzhong (高欢忠), HE Long (何龙), HE Zhijiang (何志江), LI Zebin (李泽斌), et al.. Work Function Enhancement of Indium Tin Oxide via Oxygen Plasma Immersion Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 791-793. DOI: 10.1088/1009-0630/15/8/14
    [9]ZHANG Jianhua(张建华), WANG Naiyan(王乃彦), ZHANG Fengshou(张丰收). Analysis of Accumulating Ability of Heavy Metals in Lotus (Nelumbo nucifera) Improved by Ion Implantation[J]. Plasma Science and Technology, 2012, 14(5): 424-426. DOI: 10.1088/1009-0630/14/5/21
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.

Catalog

    Article views (293) PDF downloads (749) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return